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Cluster states are multi-qubit entangled states that maintain their entanglement even if few of their qubits are 

measured, or even lost [1]. Cluster states of entangled photons are resources for measurement-based quantum 

computing and quantum communication protocols [2–3]. Demonstrating that a solid-state device can determin-
istically generate a photonic cluster state is a key to enabling these emerging technologies [4]. 

Here, we use a semiconductor-based quantum knitting machine that continuously and deterministically gen-

erates an indistinguishable multi-photon cluster state at a sub-GHz generation rate. Our device realizes a protocol 

proposed by Lindner and Rudolph [4], in which the quantum dot confined heavy-hole is used as a photon's entan-

gler [5-7]. We use an externally applied magnetic field in Voigt configuration to tune the spin precession rate to 

achieve optimal entanglement length and to match exactly one-quarter of the precession to the pulse repetition rate. 

Thus, a single cycle of the protocol repeats itself indefinitely.  

We characterize the generated cluster state by polarization tomography of a multi-photon state in which the 

first and last photons are projected on a circular polarization base. This way, the photons are disentangled from the 

quantum dot confined heavy hole qubit, resulting in an all-photonic cluster state. By detecting 4 sequential photon 

events, we demonstrate the concept of an all-photonic cluster state, and we quantify the robustness of the cluster 

entanglement. In addition, by tomography measurements of sequential events in which one photon was not de-

tected, we demonstrate unambiguously that the device photon generation is deterministic. 
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Fig.1. A. Schematic of entanglement generation and measurement. In the left panel, the laser’s repetition rate is tuned to 

the hole’s precession and the QD continuously emits a photonic cluster state. In the right panel, up to 6 photons’ polarization 

are projected and their detection times are correlated. B. Two-photon polarization density matrix from a string of five 

photons. The first and last photons are projected on circular polarization and the middle photon is not detected. 

 


