Crossover from Resistive to Ballistic Phonon Transport and Giant-Phonon Drag in Homoepitaxial B-Ga₂O₃ Films

R. Mitdank¹, R. Ahrling¹, J. Boy¹, A. Popp³, Z. Galazka³ and S. F. Fischer^{1,2}

1 *Novel Materials Group, Institut für Physik, Humboldt-Universität zu Berlin, 10099 Berlin, Germany* ²*Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, 12489 Berlin, Germany 3 Leibniz Institute of Crystal Growth, 12489 Berlin, Germany*

sfischer@physik.hu-berlin.de

ß-Ga2O3 is a transparent ultra-wide bandgap (4,7-4,9 eV) semiconductor of topical research interest for deep UV-devices, gas sensors and high power electronic applications [1] with a predicted breakthrough electric field of E_b = 8MV/cm. A major challenge in electronic device design is heat dissipation due to the low room temperature thermal conductivity [2] which is approximately a factor of 8 and 30 lower than those of bulk GaN and SiC, respectively.

Here, we observe the cross-over from resistive to ballistic phonon transport [3]: The anisotropic thermal conductivity and the phonon mean free path (mfp) of monoclinic β -Ga₂O₃ single crystals and homoepitaxial films are determined by the 3ω-method in the temperature range from 300 K down to 10 K. The measured effective thermal conductivity of *both*, single crystal and homoepitaxial films are in the order of 20 W/(mK) at room temperature, proving high quality *phonon-transparent homoepixial interfaces*. Below 30 K a maximum of 1000 to 2000 W/(mK) is achieved, decreasing with T^3 below 25 K. Analysis of the phonon mfp shows a dominance of phonon-phonon-Umklapp scattering above 80 K, below which the influence of point-defect scattering is observed. Below 30 K the phonon mfp is limited by the total β -Ga₂O₃ sample size. Ballistic phonon transport is observed below 20 K and boundary effects of the total sample size become dominant. The resistive and ballistic phonon transport regimes in β -Ga₂O₃ are discussed.

These findings open a route to harness the phonon-drag to enhance the thermoelectric functionality by a control of the electron and phonon interaction. Here, we demonstrate giant phonon-drag in homoepitaxially grown β -Ga₂O₃ films. We show that a decoupling of the cross sections of electron-phonon and phonon phonon interaction can be achieved by nanometer-thin homoepitaxial films with phonontransparent epitaxial interfaces. For decreasing film thickness a crossover from three-dimensional to two-dimensional electronphonon interaction takes place if Umklapp scattering dominates.

References

[1] Z. Galazka, Semiconductor Science and Technology, 33, 113001 (2018); S. J. Pearton, *et al.*, Applied Physics Reviews 5 (1), 01130 (2018); A. J. Green, *et al.*, APL Mater. 10, 029201 (2022)

frequency f [Hz] 1753 4786 227 resistive regime 290 K $\overline{40}$ 206 K 100 K Σ voltage $U_{3\omega}$ [$\frac{3}{20}$ 15 10 11 237 1753 12952 13 (b) crossover to 21 K
17 K
13 K ballistic regime 12 voltage U₂₋₁[µV] 10 300 glue sample holder $\overline{10}$ $ln(2\omega)$

Examplary data: 3ω -voltage as a function of the logarithmic frequency for a 3µm homoepitaxial ß-Ga2O3 film on a single crystalline substrate in the [100]/[010] configuration. Crossover to the ballistic thermal transport regime at low temperatures (21 K – 13 K). The linear dependence $U_{3\omega} \propto \ln(2\omega)$ can clearly be seen.

[2] M. Handwerg, *et al.*, Semicond. Sci. Technol. 30, 024006 (2015); Semiconductor Science and Technology 31, 125006 (2016)

[3] R. Ahrling, *et al.,* arXiv: 2403.11341