Enhanced Photoresponse of VO₂ Nanowires by Surface Doping with AuNPs via Dielectrophoresis Method

Inayat Uddin¹, Hai Yen Le Thi², Nhat Anh Nguyen Phan¹, Hanul Kim², and Gil-Ho Kim^{1,2}

¹Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea

²Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea

ghkim@skku.edu

The recent advancements in synthesizing single crystalline onedimensional (1D) nanostructures of vanadium dioxide (VO₂) in the form of nanowires (NWs) have sparked increased research interest for application in electrical and optical switching devices [1-3]. In this study, we examine the photocurrent response in VO₂, a highly correlated material that is well-known for its significant metalinsulator transition at a temperature of around 340 K [3-4]. This property makes VO₂ potentially valuable for applications in optoelectronic detection and switching, particularly for UV wavelengths. The investigation included the examination of individual and isolated VO₂ NWs photocurrent response before and after gold nanoparticles (AuNPs) surface deposition via the dielectrophoresis (DEP) method. Carrier injection is controlled by manipulating the presence of AuNPs on the surface of a single crystal VO2 NWs. The VO2 NW device exhibited an enhanced photocurrent after AuNPs surface deposition. Our study demonstrates the significance of using AuNPs deposition via the DEP process for the enhanced photocurrent response to analyze nanoscale crystals in the study of highly correlated materials for thermoelectric and optical applications [5-6].

Fig.1. a) A schematic diagram of a VO₂ nanowire device. b) Metal-insulator transition of the VO₂ NW device at temperature 68°C. c) Photoresponse of VO₂ NW device after AuNPs surface deposition.

References

- [1] N. Shukla, Sci. Rep. 4, 4964 (2015).
- [2] S. Chen, Sci. Adv. 5, 6815 (2019).
- [3] G. H. Kim, ACS Appl. Mater. Interfaces, 6, 14812–14818 (2014).
- [4] S. Rathi, ACS Appl. Mater. Interfaces, 6, 19718–19725 (2014).
- [5] X. Cao, Matter 2, 862–881 (2020).
- [6] D. Schrecongost, Nano Lett. 20, 7760–7766 (2020).