Observation of non-diffusive phonon heat transport in ultrathin layered semiconductors MoSe₂ and MoS₂

S. Varghese^{1,2}, J. Tur Prats³, J.D. Mehew¹, D. Saleta Reig^{1,2}, R. Farris¹, J. Camacho³, J.A. Haibeh⁴, A. Sokolov^{4,5}, P. Ordejón¹, S. Huberman⁵, A. Beardo^{3,6}, F.X. Alvarez³, K.J. Tielrooij^{1,2}

¹Catalan Institute of Nanoscience and Nanotechnology (ICN2), BIST & CSIC, Campus UAB, 08193 Bellaterra (Barcelona), Spain

²Eindhoven University of Technology, Den Dolech 2, 5612 AZ, Eindhoven, the Netherlands
³Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
⁴Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada

⁵Institute of Mechanics, Technische Universität Berlin, Einsteinufer 5, 10587 Berlin

⁶Department of Physics, JILA, and STROBE NSF Science and Technology Center, University Colorado and NIST, Boulder, Colorado 80309, United States

k.j.tielrooij@tue.nl

Understanding and controlling heat flow is of great fundamental interest and of crucial importance for the design and operation of a host of semiconductor-based devices, components, and systems. The layered semiconductors of the transition metal dichalcogenide (TMD) family, such as MoSe₂, MoS₂, WSe₂ and WS₂, are projected to play an important role in several (opto)electronic applications. For example, there are roadmaps predicting TMDs serving as transistor channel material within a decade from now, and companies such as TSMC are actively researching TMDbased transistors [1]. It is therefore crucial to understand heat transport in these materials.

We have recently developed a novel experimental technique to follow heat diffusion in thin films directly in space and time and have applied this to the transition metal dichalcogenides MoSe₂, MoS₂, WSe₂ and WS₂ [2]. For flakes with a thickness around 15 nm, this spatiotemporal thermometry technique gives diffusivities that agree well with both experimentally obtained thermal conductivities in literature and our own ab-initio calculations of the thermal diffusivities of these materials [2]. We have also found that MoSe₂ starts outcompeting silicon for thicknesses below a few tens of nanometers in terms of in-plane thermal conductivity [3].

In most cases, heat transport follows Fourier's law of diffusion, where a photo-induced hot spot gradually spreads out spatially while cooling down. Deviations from diffusive Fourier heat transport can occur in the ballistic regime on short time- and length-scales, and in the hydrodynamic regime, where heat flow is "viscous". Hydrodynamic phonon heat transport has been predicted to occur for several layered materials [4,5], and manifestations of this regime have been observed in (multilayer) graphene below room temperature [6,7].

Using our spatiotemporal thermometry technique, we observe the occurrence of strongly non-diffusive heat transport for ultrathin suspended $MoSe_2$ and MoS_2 flakes at room temperature [8]. We attribute this observation to the combination of nonlocality and thermoelasticity, which constitutes a novel regime of non-diffusive transport. Our mesoscopic model of these combined effects indeed reproduces the experimental results.

The observation of non-diffusive heat transport at room temperature opens up interesting new pathways towards thermal management and thermoelectric energy generation based on ultrathin layered semiconductors.

References

- [1] P.C. Shen et al. Nature 593, 211 (2021)
- [2] S. Varghese et al, Rev. Sci. Instr. 94, 034903 (2023)
- [3] D. Saleta Reig et al, Adv. Mater. 34, 2108352 (2022)
- [4] A. Cepelotti et al. Nat. Commun. 6, 6400 (2015)
- [5] S. Lee et al. Nat. Commun. 6, 6290 (2015)
- [6] S. Huberman et al. Science 364, 375 (2019)
- [7] Z. Ding et al. Nat. Commun. 13, 285 (2022)
- [8] S. Varghese et al. to be published