Probing the 2/3 Edge Channel Quantum Coherence using Electronic Hong Ou Mandel Shot Noise Correlation

Avirup De¹, Charles Boudet¹, J. Nath¹, M. Kapfer¹, P. Roulleau¹, D. A. Ritchie², Ian Farrer³ and D. C. Glattli^{1,*} ¹Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette Cedex, France

²Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK

³Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, S1 3JD, UK

*christian.glattli@cea.fr

We perform Photo-Assisted Shot Noise (PASN) measurements and electronic Hong Ou Mandel (HOM) shot noise measurements by sending GHz microwave excitations on the contacts of a Hall bar with a Quantum Point Contact in its middle, see Fig. 1.

Under weak reflection of the inner channel by the QPC, we combine a DC voltage V_{ds} and the RF excitation to probe the possible voltage reduction $V_{QPC} < V_{ds}$ across the QPC which may be expected occurring from the resistive nature of the $^2/_3$ edge channel. V_{QPC} is measured via the Josephson relation using the PASN noise singularity occurring when V_{QPC} obeys the Josephson relation $\frac{e}{3}V_{QPC} = hf[1]$.

Then, applying the same coherent sine-wave RF excitation V_1 and V_2 on both contacts, but with a timedelay τ , and measuring the cross-correlated partition noise of e/3 charge in the weak reflection regime, we observe HOM noise oscillations similar to that recently observed on the 2/5 and integer edge channel. The finite but weak visibility observed in these twoparticle noise interference measurements signals the existence of a finite quantum coherence of the 2/3 edge channel[2], see Fig. 2.

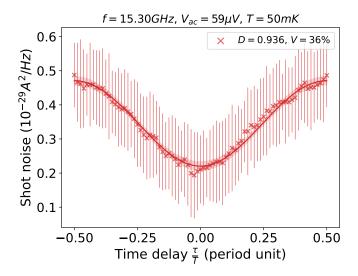


Fig. 2. HOM shot noise experiments shows that there is quantum coherence at $\nu = 2/3$. Visibility $\approx 36\%$. Measured data correspond to the \times symbols; the fit corresponds to the solid line.

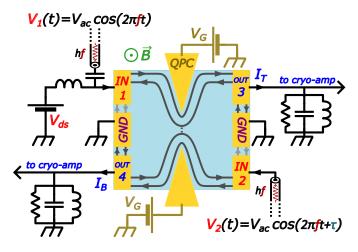


Fig. 1. QPC in a counter-propagating channels setup. Charge carriers excited by V_1 and V_2 (of time lag τ) are partitioned; transmitted and backscattered currents I_T and I_B are filtered by a 2.5 \pm 0.25 MHz LC circuit, ensuingly amplified by the cryogenic amplifiers. Signal is captured by a DAQ from with cross-correlations are computed. Additional details are found in [1].

The authors acknowledge the H2020 FET-OPEN UltraFastNano #862683 grant.

References

- I. Taktak, M. Kapfer, J. Nath, P. Roulleau, M. Acciai, J. Splettstoesser, I. Farrer, D. A. Ritchie, D. C. Glattli, Nat. Commun. 13, 5863 (2022).
- [2] A. De, C. Boudet, J. Nath, M. Kapfer, P. Roulleau, D. Ritchie, Ian Farrer, and D.C. Glattli, "Finite quantum coherence of the fractional quantum Hall edge at filing factor 2/3", in preparation.