Influence of Preparation Ambient on Luminescent and Electrical Properties of TiO₂:Sm Thin Films

S. Kaku¹, K. Miyano¹, X. Zhao^{1,2} and M. Murayama^{1,3}

¹Tokyo Univ. of Sci., Kagurazaka, Tokyo, 162-8601, Japan ²Henan University of Technology, Henan, 450001, China ³Toyo Univ. Research Institute of Industrial Technology, Kawagoe, Saitama, 350-8585, Japan

mariko.murayama@rs.tus.ac.jp

Rare earth (RE) doped TiO₂ (TiO₂:RE) shows sharp and strong emission, which makes it a promising candidate for applications in optoelectronic devices. Generally, oxygen-deficient oxide semiconductors such as TiO₂ behave as n-type, which generate free electrons. [1] It suggests that an increase in oxygen vacancies could enhance carrier concentration and reduce resistivity. On the other hand, oxygen also plays an important role in the luminescent properties of RE-doped oxide semiconductors. A 6-fold oxygen surrounds the RE ions critically influencing their luminescent properties. For instance, Samarium (Sm)-doped TiO₂ showed a significant improvement in its luminescent intensity, when the local fine structure around Sm³⁺ was distorted. [2] Therefore, this study reveals how the fabrication and annealing atmospheres (N₂+H₂ and O₂) influence the coordination and structure around Sm³⁺ and their effect on the luminescent properties of TiO₂:Sm thin films. Furthermore, the electrical properties including carrier concentration determined by capacitance-voltage (CV) measurements are discussed.

TiO₂:Sm thin films were deposited on SrTiO₃:Nb (100) substrates using pulsed laser deposition (PLD). A ceramic target consisting of TiO₂ and Sm₂O₃ (1 wt%) was laser ablated by the third harmonic generation (355 nm) of a Q-switched yttrium aluminum garnet (YAG) laser. A chamber was controlled under the pressure of 1.0×10^{-2} Torr in atmospheres of O₂ and H₂+N₂ forming gas (H₂:N₂=5:95%). The films were annealed at 700°C for 10 minutes in either an O₂ atmosphere or a H₂+N₂ forming gas atmosphere. RuO₂ was deposited on the TiO₂:Sm thin films to make Schottky contacts for CV and current-voltage (IV) measurements.

Figure 1 shows photoluminescence (PL) spectra of TiO₂:Sm thin films with different fabricating and annealing atmospheres. Samples prepared in an O₂ atmosphere for both the deposition and annealing phases (denoted as OO) exhibited the strongest PL intensity. In contrast, samples deposited in a H₂ atmosphere and annealed in an O₂ (HO), as well as those deposited in an O₂ and annealed in a H₂ (OH), exhibited significantly weaker than OO PL intensity. The luminescence intensity of HO was about one-eighth and OH about one-fifteenth of that observed for OO. Samples processed in a H₂ atmosphere for both deposition and annealing (HH) did not exhibit any luminescence. However, IV and CV measurements revealed that the HH sample marked the highest conductivity with carrier concentrations exceeding $10^{19}/\text{cm}^3$. This is markedly higher than that for OO, OH, and HO, hovering around $10^{17}/\text{cm}^3$. Further details including the local fine structure around

Sm³⁺ in TiO₂ matrix characterized by X-ray absorption fine structure (XAFS) analysis, evaluations of crystallinity via X-ray diffraction (XRD), and detailed outcomes of both CV and I-V measurements and its effect on luminescent and electrical properties will be discussed.

References

[1] A. Ishizawa, et al., "A significant increase in carrier concentration in TiO₂ by Sm doping," Japanese Journal of Applied Physics, (2024).

[2] M. Murayama, "Optical, electrical and local fine structural characterization of Rare-Earth doped TiO₂ thin films for application as luminescent phosphors in LEDs," PhD Thesis, Tokyo University of Science, (2021).