Observing Zero-Field Energy Gap in Graphene Grown on Sapphire Substrate

Y. Hiraga¹, K. Kaneta¹, S. Li², Y. Hirayama^{2,3}, S. Sakai², K. Hashimoto^{1,3}

¹Graduate School of Sciences, Tohoku University, Sendai, 980-8578, Japan

²Quantum Materials and Applications Research Center, National Institutes for Quantum Science and Technol-

ogy, Takasaki 370-1292, Japan

³Centre for Science and Innovation in Spintronics, Tohoku University, Sendai, 980-8578, Japan

hiraga.yuma.r3@dc.tohoku.ac.jp

Introducing an energy gap into graphene is a pivotal challenge for the developing graphene-based devices. An innovative approach involves breaking the sublattice symmetry, a technique successfully applied to graphene on a hexagonal boron nitride (hBN) substrate. In this study, we examine the energy gap in single-layer graphene, which was grown via chemical vapor deposition (CVD) on a sapphire substrate, using the resistively-detected electron spin resonance (RDESR) technique. We conducted RDESR measurements by recording the longitudinal resistance ($R_{xx,v}$) under microwave irradiation at a fixed frequency (v) while sweeping the magnetic field (B) either perpendicular ($\perp B$) or parallel (//B) to the sample plane, within a 4 K cryostat.

Initially, the RDESR measurement was performed at v = 27 GHz. To extract the microwave-induced component, we subtracted the background resistance ($R_{xx,background}$) from the $R_{xx,v}$, obtaining ΔR_{xx} . Figure 1 shows the ΔR_{xx} curves obtained with $\perp B$ (upper) and //B (lower), both exhibiting distinct peaks near $B = \pm 1.0$ T, marked by blue arrowheads. Notably, the ΔR_{xx} curve for //B displays shoulder features on both sides of the main peak, as indicated by red arrowheads.

To further investigate these peak and shoulder features, RDESR measurements under //*B* were carried out at various frequencies. A gray-scale map of the derivative of ΔR_{xx} with respect to *B* (d(ΔR_{xx})/d*B*) as functions of *v* and *B* (Fig.2 (a)) reveals that the peak and shoulder features evolve along the three parallel lines; this is supported by Fig. 2(b), which plots the corresponding *v* - *B* positions. A linear fit of the middle line (blue) yielded a slope of 27.9 ± 0.6 GHz/T and verifies that the extrapolated line crosses the origin. This indicates that the observed peak corresponds to the ESR signal, expected to show simple Zeeman gap in the *B* field, i.e., $hv = g\mu_B B$ (*h*: Planck's constant, μ_B : Bohr magneton), with a corresponding *g*-factor of 2.00 ± 0.05. Conversely, significant deviations from the origin at zero field by 4.6 ± 0.3 GHz (higher) and -5.0 ± 0.6 GHz (lower) were observed for higher and lower red lines, respectively. This deviation implies an energy gap $\Delta \sim 20 \mu eV$, indicating band splitting in graphene at zero field. Such splitting, observed in both CVD [1] and mechanically exfoliated [2] graphene on the hBN substrate, is attributed to sublattice splitting due to symmetry breaking. Our findings demonstrate the potential for the substrate-induced gaps due to symmetry breaking on sapphire substrates, suggesting the possibility of extending these observations beyond hBN substrates.

Fig.1. *B*-field dependence of ΔR_{xx} (= $R_{xx,v}$ - $R_{xx,background}$) at v = 27 GHz. The *B*-field direction with respect to the sample plane is indicated in the figure. The blue (red) arrowheads indicate main peak (shoulder features).

Fig.2. v - B map of ΔR_{xx} signal under //B. (a) Gray-scale map of derivative amplitude: $d(\Delta R_{xx})/dB$. (b) Peak positions of ESR signal (blue dots) and satellite signal (red dots) along with liner fitting curves. The blue (red) arrowhead indicates main signal (shoulder features).