Observing Zero-Field Energy Gap in Graphene Grown on Sapphire Substrate

Y. Hiraga¹, K. Kaneta¹, S. Li², Y. Hirayama^{2,3}, S. Sakai², K. Hashimoto^{1,3}

¹*Graduate School of Sciences, Tohoku University, Sendai, 980-8578, Japan*

2*Quantum Materials and Applications Research Center, National Institutes for Quantum Science and Technol-*

ogy, Takasaki 370-1292, Japan

³*Centre for Science and Innovation in Spintronics, Tohoku University, Sendai, 980-8578, Japan*

hiraga.yuma.r3@dc.tohoku.ac.jp

Introducing an energy gap into graphene is a pivotal challenge for the developing graphene-based devices. An innovative approach involves breaking the sublattice symmetry, a technique successfully applied to graphene on a hexagonal boron nitride (hBN) substrate. In this study, we examine the energy gap in single-layer graphene, which was grown via chemical vapor deposition (CVD) on a sapphire substrate, using the resistively-detected electron spin resonance (RDESR) technique. We conducted RDESR measurements by recording the longitudinal resistance (*R*xx,*ν*) under microwave irradiation at a fixed frequency (*ν*) while sweeping the magnetic field (*B*) either perpendicular $(\perp B)$ or parallel (//*B*) to the sample plane, within a 4 K cryostat.

Initially, the RDESR measurement was performed at *ν* = 27 GHz. To extract the microwave-induced component, we subtracted the background resistance (*R*xx,background) from the *R*xx,*ν*, obtaining Δ*R*xx. Figure 1 shows the Δ*R*xx curves obtained with $\perp B$ (upper) and //*B* (lower), both exhibiting distinct peaks near *B* = ±1.0 T, marked by blue arrowheads. Notably, the Δ*R*xx curve for //*B* displays shoulder features on both sides of the main peak, as indicated by red arrowheads.

To further investigate these peak and shoulder features, RDESR measurements under //*B* were carried out at various frequencies. A gray-scale map of the derivative of ΔR_{xx} with respect to *B* (d(ΔR_{xx})/d*B*) as functions of *ν* and *B* (Fig.2 (a)) reveals that the peak and shoulder features evolve along the three parallel lines; this is supported by Fig. 2(b), which plots the corresponding *ν* - *B* positions. A linear fit of the middle line (blue) yielded a slope of 27.9 ± 0.6 GHz/T and verifies that the extrapolated line crosses the origin. This indicates that the observed peak corresponds to the ESR signal, expected to show simple Zeeman gap in the *B* field, i.e., $hv = g\mu_B B$ (*h*: Planck's constant, μ_B : Bohr magneton), with a corresponding *g*-factor of 2.00 \pm 0.05. Conversely, significant deviations from the origin at zero field by 4.6 ± 0.3 GHz (higher) and -5.0 ± 0.6 GHz (lower) were observed for higher and lower red lines, respectively. This deviation implies an energy gap *Δ* ~ 20 μeV, indicating band splitting in graphene at zero field. Such splitting, observed in both CVD [1] and mechanically exfoliated [2] graphene on the hBN substrate, is attributed to sublattice splitting due to symmetry breaking. Our findings demonstrate the potential for the substrate-induced gaps due to symmetry breaking on sapphire substrates, suggesting the possibility of extending these observations beyond hBN substrates.

[1] U. R. Singh, et al, Phys. Rev. B. **102**, 245134 (2020), [2] C. Bray, et al, Phys. Rev. B. **106**, 245141 (2022).

Fig.1. *B*-field dependence of ΔR_{xx} (= $R_{xx,y}$ - $R_{xx, \text{background}}$) at $v = 27$ GHz. The *B*-field direction with respect to the sample plane is indicated in the figure. The blue (red) arrowheads indicate main peak (shoulder features).

 0.0

 $B(T)$

 0.5

 $\overline{1.0}$

 -0.5

 -1.0

Fig.2. $v - B$ map of ΔR_{xx} signal under //*B*. (a) Gray-scale map of derivative amplitude: $d(\Delta R_{xx})/dB$. (b) Peak positions of ESR signal (blue dots) and satellite signal (red dots) along with liner fitting curves. The blue (red) arrowhead indicates main signal (shoulder features).