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Recent research focused on discovering new materials that exhibit superior performance and efficiency in the
thermoelectric effect represents a leading trend in condensed matter physics. Prominent among these materials are
novel semimetals, topological insulators, and Dirac materials. A critical factor enabling the exploitation of these
materials’ unique properties is the ability to manipulate their exotic electronic structures to boost thermoelectric effi-
ciency.
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Fig. 1. (a) (a) Conductivity of the different sub-
bands in gapless 6.3 nm HgTe quantum well as
a function of the chemical potential (b) Seebek
coefficient as a function of the density measured
for different samples: Red line-sample A, blue
line -sample B, black line -sample C, T=4.2 K.
Insert- the temperature dependence of the Seebek
coefficient for holes (V g = −4V ), solid red line
S ∼ T 1.5. Circles-theory calculated from the
Mott equation. (c) Calculated figure of merit ZT
as a function of the carrier density.

The figure of merit for thermoelectric materials, denoted as ZT ,
is defined by the equation: ZT = S2

eσT
κ (1), where Se represents

the Seebeck coefficient, σ is the electrical conductivity, κ is the
thermal conductivity, and T is the absolute temperature. Achiev-
ing high-performance thermoelectricity largely involves identify-
ing materials that possess a significant Seebeck coefficient and el-
evated electrical conductivity or mobility.

The equation (1) together with Mott equation highlight that op-
timizing thermoelectric performance can be approached in two pri-
mary ways: enhancing the energy dependence of scattering mech-
anisms and employing band engineering strategies. These strate-
gies involve leveraging a combination of highly dispersive bands
and regular bands to enhance the electrical performance of thermo-
electric materials. The first strategy involves leveraging 2D Dirac
materials, where a significant enhancement in the thermoelectric
coefficient has been expected, due to the unique transport charac-
teristics of these materials. The second approach focuses on novel
semimetals characterized by the simultaneous presence of highly
dispersive (linear) and conventional regular (parabolic) bands. The
k-linear bands are key to achieving high charge carrier mobility,
contributing to improved electrical conductivity. On the other hand,
the coexisting regular band, typically much denser than the dis-
persive topological bands, provides a substantial density of states
(DOS) and enhances thermopower.

In our study, we introduce the HgTe quantum well as a com-
prehensive platform that aligns with both outlined strategies. There
are several features that make the 2D Dirac semimetal in a gapless
HgTe quantum well an attractive system for thermoelectricity stud-
ies. The single Dirac cone responsible for several important con-
sequences can be derived from the Mott relation and can enhance
the conductivity and Seebeck coefficient (figure 1a). In contrast to
conventional 2D systems, the density of states varies with energy,
and the transport time has a strong energy dependence. The coexistence of Dirac and heavy holes creates an un-
usual situation for manipulating the band degeneracy. In this study, we have measured the Seebeck coefficient in a
6.3 nm HgTe well and demonstrated that some of these possibilities can be developed in this system. The behavior
of the Seebeck coefficient is explained based on the Mott relation (figure 1b,c).


