Resonant Tunneling Detection of Atomic Reconstruction in Twisted Bilayer WSe²

K. Kinoshita¹, R. Moriya¹, Y. -C. Lin², S. Okazaki³, M. Onodera¹, Y. J. Zhang¹, R. Senga², K. Watanabe⁴, T. Taniguchi⁴, T. Sasagawa³, K. Suenaga⁵, and T. Machida¹

1 *Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan*

² *National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan*

³ *Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Kanagawa*

226-8503, Japan

⁴ *National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan ⁵ The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Japan* kkino@iis.u-tokyo.ac.jp

A moiré lattice in a twisted-bilayer (tBL) transition metal dichalcogenide exhibits a complex atomic reconstruction when its twist angle is less than a few degrees [1]. In this study, we perform resonant-tunneling transport measurements and transmission electron microscopy (TEM) observations for tBL-WSe₂ samples with various twist angles, and reveal the correlation between atomic reconstruction and the subband energy at the valence band (VB) $Γ$ point. 600

A schematic of tunneling devices is presented in Fig. 1(a). Under an application of gate voltages and interlayer bias V_{int} , a hole tunnel current *I* flows from 3L-WSe₂ into tBL-WSe² through the *h*-BN barrier. Resonant tunneling occurs when the energy of the VB top at the Γ-point of $3L$ -WSe₂ coincides with the energies of the VB Γ -point band of d-WSe₂, with energy and momentum conservation [2,3]. Consequently, a peak current with negative differential resistance emerges in the *I*-*V*int curve, allowing us to probe the VB Γ -point energies of tBL-WSe₂. Fig. $1(b)$ shows the results of tunneling into tBL-WSe₂ under different twist angles θ_{BL} . The observed two peaks, indicated by red and blue marks, correspond to resonant tunneling into VB-Γ-point states of tBL-WSe2. These *V*int positions are plotted against θ_{BL} in Fig. 1(c). The results indicate a significant change in the VB-Γ point band at small twist angle region such as $\theta_{BL} = 0^{\circ}$, 2°, and 4°, as illustrated in Fig. 1(d). In this twist angle region, we observed an atomic-reconstructed moiré lattice in tBL-WSe₂ by using TEM (Fig. 1(e)). Thus, the band alternations are attributed to the atomic reconstruction in tBL-WSe₂. Our calculations indicate that the VB-Γ-point band of BL- $WSe₂$ is significantly affected by the interlayer distance. Therefore, we consider that the atomic reconstruction influences the interlayer distance, consequently modifying the VB-Γ-point energies. Our findings highlight the energy changes associated with lattice alterations due to the atomic reconstruction in tBL-WSe₂, providing a different viewpoint from the well-explored energy modulations by the moiré potentials.

References

[1] A. Weston *et al.*, Nat. Nanotechnol. **15**, 592 (2020). [2] K. Kinoshita *et al.*, Nano Lett. **22**, 4640 (2022). [3] K. Kinoshita *et al.*, Phys. Rev. Research **5**, 043292 (2023).

Fig. 1 (a) Schematics of the tunneling device and momentum-conserved resonant tunneling. (b) Current-voltage characteristics from all the devices. (c) Peak *V*int positions plotted against θ_{BL} . (d) Schematics of twist angle dependence of the VB-Γ-point band of tBL-WSe₂. (e) TEM images of tBL-WSe₂. Blue (light blue) marks indicate the atomicreconstructed features. All scale bars are 5 nm.