Observation of spatially dependent nonequilibrium bulk and edge spin accumulation in two dimensional MoTe₂

F. C. Chen¹, K. Das², B. W. Yang¹, S. Z. Zhong¹, D. Golovanova², H. Ren¹, T. Y. Wang^{3,4}, X. Luo³, Y. P. Sun^{3,5,6}, G. X. Miao¹, B. H. Yan², and A. W. Tsen^{1*}

¹ Institute for Quantum Computing, Department of Chemistry, Department of Physics and Astronomy, and Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada

² Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel

³ Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China

⁴ University of Science and Technology of China, Hefei, 230026, China

⁵ Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China

⁶ Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China

*awtsen@uwaterloo.ca

Two-dimensional (2D) topological materials such as MoTe₂ host various efficient charge-to-spin conversion (CSC) mechanisms that reveal promising applications for field-free switching in perpendicular anisotropy magnets, essential for advanced spintronic devices [1]. However, the nature of the various CSC mechanisms and their correlation with underlying crystal symmetries remain unsettled. I will discuss on results on using spin-sensitive electrochemical potential measurements to directly probe the spatially dependent nonequilibrium spin accumulation in MoTe₂ across various sample locations and thicknesses. We can clearly distinguish the contributions originating from the spin Hall and Rashba-Edelstein effects and uncover spin accumulation from a conventional spin Hall effect that persists for all thicknesses as well as distinct bulk and edge spin accumulation from a combination of conventional and unconventional CSC effects that gradually appear as the thickness is lowered. [2,3]. By comparison with *ab initio* calculations, we establish a unified understanding of all the observed CSC components in relation to the material dimensionality and stacking order. Our findings not only elucidate previous CSC and spin-orbit torque results on MoTe₂, but also paves the way for the design of future spintronic devices utilizing this 2D material.

References

[1]. Manchon, A. *et al.* Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. *Rev. Mod. Phys.* **91**, 035004 (2019).

[2]. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. *Rev. Mod. Phys.* 87, 1213–1260 (2015).

[3]. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. *Solid State Commun.* **73**, 233–235 (1990).