Glycocentric serum proteomics applied to Barrett’s esophagus and esophageal adenocarcinoma

Alok K. Shah1, Vojtech Franc2, Wioleta Zelek3, Gunter Hartel1, Ian Brown4, Clay Winterford1, Bradley Spicer5, Michelle Dunstone5, PROBE-NET6, Virendra Joshi7, David Whiteman1, B Paul Morgan3, Albert J. R. Heck2, and Michelle M. Hill1

1QIMR Berghofer Medical Research Institute, Australia; 2University of Utrecht, The Netherlands; 3Cardiff University School of Medicine, UK; 4Envoi Pathology, Australia; 5Monash University, Australia; 6Centre for Research Excellence, Australia; 7Ochsner Health System, USA

Introduction: There is an unmet clinical need for first-line blood biomarker based surveillance tool to monitor Barrett’s esophagus (BE) patients for development of esophageal adenocarcinoma (EAC). Earlier, we discovered serum glycoprotein biomarker candidates that differentiate between BE and EAC phenotype (1). To progress biomarker development, we conducted independent cohort evaluation of biomarker candidates, including dysplastic condition. In addition, we selected the top candidate protein, complement component C9 (C9), for tissue immunohistochemistry and serum protein proteoform and glycopeptide analyses.

Methods: 301 serum samples were analyzed using previously established targeted glyco-centric proteomics workflow (1). Univariate (ROC curve) and multivariate (recursive partitioning) statistical analyses were performed. C9 was purified from pooled serum samples of different disease groups and subjected to proteoform analysis (2).

Results: C9 and gelsolin were validated as top diagnostic biomarker candidates for EAC (3). A panel of 10 serum glycoprotein candidates, which includes 6 complement pathway proteins showed high discriminatory value (AUROC 0.93) to select BE patients requiring intervention (high grade dysplasia and EAC). Immunohistochemistry on esophageal tissues confirmed elevated C9 protein during progression through BE/EAC. However, initial serum C9 proteoform and glycopeptide analysis of pooled samples showed only minor differences in C-mannosylation and O-linked sialylation in EAC.

Conclusions: Glyco-centric proteomics facilitated discovery and validation of serum biomarker candidates for BE surveillance. Potential alterations in complement pathway function merit further clinical and molecular validation.