Effects of Maternal Position on Placental Blood Flow and Oxygen Transfer in Fetal Growth Restriction - an MRI study.

Devanshi Jani¹, Alys Clark², Sophie Couper¹, John Thompson^{1,3}, Anna David⁴, Andrew Melbourne⁵, Ali Mirjalili⁶, Peter Stone¹.

¹Dept. Obstetrics & Gynaecology, University of Auckland, NZ. ²Auckland Bioengineering Institute, NZ. ³Dept. Paediatrics and Child Health, University of Auckland, NZ. ⁴Elizabeth Garrett Anderson Institute for Women's Health, University College, UK.

⁵School of Biomedical Engineering and Imaging, Kings College London, UK. ⁶Dept. Anatomy and Medical imaging, University of Auckland, NZ.

Background:

Supine going-to-sleep position is an independent, modifiable risk factor for late stillbirth, with a greater risk of fetal growth restriction (FGR). The effect of supine position on fetal oxygenation has not been investigated in FGR pregnancies.

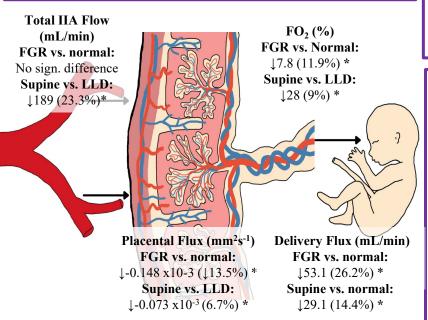
Aims:

- 1. To investigate maternal-placental and fetoplacental blood flow, placental oxygen transfer and fetal oxygenation in FGR, compared to healthy pregnancies.
- 2. Quantify the effect of maternal supine position on the above outcomes in normal and FGR pregnancies

Method:

12 FGR and 27 normal pregnancies at 34-38 weeks gestation

Participants underwent Phase Contrast MRI and Diffusion-Relaxation combined MRI (DECIDE) in supine and left-lateral decubitus (LLD) position — total 25 min


MRI images analysed to calculate:

- Maternal Total Internal Iliac Artery (TIIA) Blood Flow
- Umbilical Venous (UV) Blood Flow
- Fetal Oxygen Saturation (FO₂)
- Placental Flux oxygen transfer (Diffusivity x FO₂)
- Delivery Flux fetal oxygen delivery (UV Flow x FO₂)

<u>Results:</u>

1. FGR compared with normal pregnancies:

TIIA Flow	No significant difference (p=0.40)
UV Flow	56 mL/min lower (18%, p=0.008)
FO ₂	7.8% lower (12%, p=0.02)
Placental Flux	0.148 x10 ⁻³ mm ² s ⁻¹ lower (14%, p=0.03)
Delivery Flux	53 mL/min lower (26%, p=0.0004)

2. Supine compared with LLD position:

TIIA Flow	189 mL/min reduction (23%, p<0.0001)
UV Flow	28 mL/min reduction (9%, p=0.01)
FO ₂	3.8% reduction (6%, p=0.001)
Placental Flux	0. 073 x10 ⁻³ mm ² s ⁻¹ reduction (7%, p=0.01)
Delivery Flux	29 mL/min reduction (14%, p=0.0007)

The effects of supine position on TIIA flow, UV flow, FO₂ and Delivery Flux were independent of whether the participant had a normal or FGR pregnancy.

Conclusion:

- MRI is a useful method of non-invasively quantifying fetal oxygenation and placental function in FGR pregnancy
- In FGR, there is a significant reduction in FO₂, placental oxygen transfer and fetal oxygen delivery compared to healthy pregnancies.
- Maternal supine position causes acute fetal hypoxaemia, and growth-restricted fetuses are more vulnerable to this stressor due to their chronic hypoxaemia.
- This explains why FGR pregnancies have a higher risk of unexplained late stillbirth.