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ABSTRACT 
CONTEXT  
Engineering competencies play an important role in planning curriculum goals and course design. 
The traditional focus has been on technical skills; however, more recently, human-orientated skills 
have increased in importance using terms such as generic, professional, and transferable skills with 
these skills now firmly embedded in the curriculum. In addition, the management of engineering 
programs is constrained by factors such as the cost of innovation, the cost of scaling up, the 
diversity of student intake, limited access to industry partners, and so on. This increase in the 
number and complexity of program requirements has made it more difficult to extract the vital 
indicators of how competencies are developed, which are essential for closing the loop program 
aims and outcomes.  

PURPOSE OR GOAL 
The aim of the work is to develop concepts, techniques, and tools that focus on the structural 
aspects of the curriculum, such as the sequencing of courses and interactions between courses, to 
determine the influence that different components have in developing competencies. Influence here 
refers to courses that are strongly connected to other courses to mediate knowledge development 
and requirements satisfaction.  

APPROACH OR METHODOLOGY/METHODS  
The approach used for analysing a program is to apply graphical network analysis and theory. The 
relationship between courses and competencies was represented as a bipartite graph with link 
weights calculated using data from the Course Handbook. Dependency analysis and the BiRank 
measure allowed the influence of courses and competencies to be determined that also included the 
effect of neighbouring nodes. Course prerequisite graphs were used to model knowledge flow using 
the perspectives of knowledge development and requirements satisfaction.  

ACTUAL OR ANTICIPATED OUTCOMES  
The analysis was applied to a mechanical engineering program that had a strong component of 
professional skills. The analysis of the bipartite graph determined how competencies were 
developed depending on the type of course (technical or generic skills) and the type of competency 
(discipline, design, or professional). Dependency analysis identified which courses could act as 
crossover points between different streams. Inclusion of competency alignment in the prerequisite 
graphs showed a spreading effect of influence between courses. 

CONCLUSIONS/RECOMMENDATIONS/SUMMARY  
The results verified the effectiveness of using graph theory to extract meaningful information from 
complex program and course data using structural information. Influential components of the 
program could be determined as well as hidden aspects of the curriculum such as cross-
dependencies. This information can be used to identify critical courses that require more teaching 
attention, facilitate course redesign, and aid resource allocation.  

KEYWORDS  
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Introduction 

The rigorous specification of engineering competencies is vital for curriculum planning and course 
design. The traditional focus has been on technical skills. However, engineering practice 
requirements have broadened due to increased demands for interdisciplinarity, sustainability, 
globalisation, workforce mobility, and related human-orientated and employability skills. The 
imagining of the future engineering graduate is one who is “T-shaped,” with a long vertical line of 
depth on technical skills and knowledge and a wide horizontal line of breadth in generic skills. By 
the term generic skills, we include a broad range of skills including writing, communication, critical 
thinking, self-learning, leadership, teamwork, business skills, and professional skills such as 
professional behaviour, ethics, demeanour, and identity. In this paper, we also consider 
transferrable engineering skills that include systems thinking, design, and engineering analysis. 
Such capabilities are now firmly established in the engineering curriculum, accreditation 
requirements, and national engineering policy documents. Despite the increased inclusion of 
generic skills in programs, the expectations for technical ability remain high (Burnett et al., 2021).  

However, the increasing breadth and diversity of requirements in the curriculum introduces several 
problems. One problem is how to achieve an integrated program so that different parts of the 
program combine coherently. Another problem is that, with different criteria used in different 
knowledge areas, it is more difficult to measure competency development, which is essential to 
close the loop between curriculum objectives and actual outcomes. Engineering programs are also 
experiencing a range of factors that the constrain the options available for designing and 
administering programs and courses that address these problems. These include the cost of 
innovation, the cost of scaling up, limited access to industry partners, limited availability of 
appropriately qualified staff, competing pressures on staff, the diversity of student intake, the quality 
of student intake, and accreditation difficulties (Crosthwaite, 2019).  

The aim of this paper is to develop concepts, techniques, and tools to make the management of the 
complexity of multiple requirements and contextual factors easer; so that when faced with large 
amounts of data the detection of patterns and contributing factors is facilitated. The approach is to 
focus on the development and measurement of competencies, as these encapsulate the learning 
outcomes and accreditation requirements of a program. The paper focusses on the structural 
aspects of the curriculum as expressed through the sequencing of courses to achieve knowledge 
development and interactions between courses, using graph theory to extract key competency 
measures. The main areas of graphical network theory used are the concepts of centrality and 
dependence to determine which courses and competencies are the most influential and to unearth 
relationships between courses and sources of influence that may otherwise be hidden. A significant 
contribution of the work is the inclusion of competencies and the increased understanding this 
provides to curriculum analysis. 

Background 

There is extensive literature now on engineering competencies. (Male, Bush, & Chapman, 2011) 
rank engineering competencies in the following order: communication, working in diverse teams, 
self-management, professionalism, creativity/problem-solving, management leadership, business, 
practical engineering, innovation, contextual responsibility (social global environment, etc.), applying 
technical theory. Other lists are given by (Chan, Zhao, & Luk, 2017), (Boelt, Kolmos, & Holgaard, 
2022), (Sharma, De Costa, & Heyzer, 2014). Although the use of graph theory for curriculum 
analysis has been conducted by other researchers, this paper expands on these applications of 
graph theory by explicitly including standard competencies in the analysis. Some of these other 
studies include the following. (Lightfoot, 2010) uses graph theory to determine favourable places in 
the curriculum for topic introduction, reinforcement, and assessment in a Business Administration 
program. (Stavrinides & Zuev, 2023) produced a course network graph with 771 nodes and 772 
links in their analyses of courses at the California Institute of Technology (Caltech) to improve the 
prediction of enrolments, progression rates, graduation time, and student performance, enhance 
student learning experiences, assist program navigation, improve resource allocation, and facilitate 
interactions between departments. (Pavlich-Mariscal, Curiel, & Chavarro, 2019) examined the CDIO 
approach to curriculum design to instil a desired body of knowledge and use a backward design 
process (Wiggins & McTighe, 2005) to determine desired outcomes, define specific prerequisite 
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topics, and identify improvement opportunities. (Aldrich, 2015) analyses a biochemistry and 
molecular biology program. Courses with many prerequisites are places of integration, whereas 
courses with many successors are information sources. Forward flow coherence occurs when the 
courses use information from the prerequisite courses effectively. Lateral coherence refers to 
connections between courses across different streams, where no formal prerequisites are specified. 
(Lie, Brennan, & Nygren, 2018) use graph theory to connect graduate attributes, attribute indicators, 
program course, learning outcomes, and grading components. (O’Meara & Vaidya, 2021) represent 
the connections between topics in a textbook as a complex system where ideas and concepts are 
interconnected and use a constructivist approach to personalise the curriculum.  

Concepts of graph theory 

A graph is defined formally by a set of nodes (sometimes called vertices) and a set of links 
(sometimes called edges), where a link connects two nodes. The nodes represent a set of entities of 
interest and the links represent relationships between the nodes (the prerequisite graph for the case 
study in the paper is shown in Figure 1). In a directed graph, each link has a specified direction from 
a source node to a destination mode. This can be used to indicate a flow or movement (e.g., by 
clicking on a hyperlink on a web page to transfer control to another web page). In an undirected 
graph, the links have no directionality. This is often used to indicate an association between two 
entities or their or co-occurrence. Graphs in which all nodes belong to the same class of objects are 

called unimodal. For a graph with N nodes, the adjacency matrix 𝐴 = (𝐴𝑡𝑜,𝑓𝑟𝑜𝑚)
𝑁×𝑁

, represents the 

graph as a matrix where the rows and columns correspond to nodes and the matrix entries 
represent the links. In an unweighted graph, the matrix entries describe the presence or absence of 
a link between two nodes. If there is a link to node “to” from node “from” then  𝐴𝑡𝑜,𝑓𝑟𝑜𝑚 = 1, 

otherwise 𝐴𝑡𝑜,𝑓𝑟𝑜𝑚 = 0. In a weighted graph 𝐴𝑡𝑜,𝑓𝑟𝑜𝑚 can be any nonnegative number that indicates 

the strength of the link.  

Centrality analysis determines which nodes are the most influential in a graph. In the context of 
curriculum analysis, influence refers to how strongly connected courses are to other courses to 
mediate knowledge development and requirements satisfaction. For an unweighted undirected 
graph, the degree of a node is the number of links joined to a node. For an unweighted directed 
graph, the outdegree of a node is the number of links that originate from the node and the indegree 
is the number of links that terminate at the node. For weighted graphs, degrees are obtained by 
summing the weights of links correspondingly. Nodes with high degree have greater connectedness 
and are often considered more influential.  

PageRank and related centrality measures extend degree centrality by taking into consideration the 
influence of neighbouring nodes: Being directly connected to another node with high influence can 
increase one’s own influence, giving the node an influence out of proportion to the number of direct 
connections it has. Calculating the PageRank centrality involves adding two terms. The first term is 
the influence of a node that is acquired from neighbouring nodes (network effect) and the second 
term is the inherent influence of a node. A parameter 𝛼 specifies the contribution of the network 
effect and 1 − 𝛼 specifies the inherent influence. If 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑁) is the vector of node 

centralities and 𝑥0 is the vector of inherent node centralities, the formula for computing centrality is 
𝑥 = 𝛼𝑊𝑥 + (1 − 𝛼)𝑥0 where 0 < 𝛼 < 1, and 𝑊is obtained from the adjacency matrix 𝐴 by dividing 
the columns by the corresponding outdegree of a node. PageRank is the basis of the Google search 
engine, where the outdegree of a page equals the number of hyperlinks on a page.  

Bipartite graphs 

A bipartite graph is a graph with two types of nodes. The only links are from a node of one type to a 
node of the other type. In this paper, one node type represents courses, and the other node type 
represents shared competencies (other examples include patient-doctor, agent-event relationships 
etc). The links considered here are undirected, and their weights (between 0 and 1) represent how 
much of a course is devoted to developing a particular competency. The rows in the adjacency 
matrix represent competencies and the columns represent courses. The projection of a bipartite 
graph involves the derivation of a unimodal graph from the initial bimodal graph. Two projections are 
possible. In the course projection, the bipartite graph is projected onto a graph of courses by 



Proceedings of AAEE 2024, University of Canterbury, Christchurch, New Zealand. Copyright © Rein Vesilo, 2024 

reflecting competency contributions back to the course nodes in proportion to the link weights and 
indicates the strength of the association between two courses expressed via shared competencies. 

 

 

Figure 1: Graph for program case study Figure 2 Bipartite graph 

In the competency projection, the bipartite graph is projected onto a graph of competencies; this 
indicates the association of competencies through shared courses. The course projected graph can 
be used to determine the dependency between two courses. A course C1 (leader) is said to depend 
on another course C2 (follower) if C1 develops a competency, say PE1, then so does C2. In this 
case, C1 and C2 would provide useful lateral coherency links for PE1 in the curriculum, so that the 
common competency PE1 can be exploited to link content and learning in courses C1 and C2. 
Courses with low dependency are either developers of a restricted set of competencies or spread 
their contribution thinly over many competencies. A numeric value for the dependence of one 
course on another course is obtained using the formula given by (Gerdes, 2014). The dependency 
matrix expresses the dependence values over all possible pairwise combination of courses. In this 
matrix, if a row, representing say course C3, has multiple large values then many courses are 
dependent on it. The dependency coefficient of a course is the average of the pairwise 
dependencies in a row. In the example, C3 would have a high dependency coefficient. However, the 
projection process can blur important relations that may be present in the original bipartite graph 
and give misleading results. An alternative class of centrality measures for a bipartite graph 
produces two sets of centrality measures, one for each side of the graph. These algorithms can be 

obtained by simultaneously solving two equations: 𝑐 = 𝛼𝑊𝑇𝑝 + (1 − 𝛼) = 𝑐0 and 𝑝 = 𝛽𝑊𝑐 + (1 −
𝛽)𝑝0, where c is the centrality of courses, p is the centrality of competencies and the suffix 0 
indicates inherent centrality. Measures differ in the way W is determined. HITS and CoHITS are 
older algorithms but suffer from sensitivity to outliers and excessive influence of high-degree nodes. 
BiRank is a newer and more robust algorithm, and is the one used in this paper1.  
  

 
1In PageRank, 𝑊 = 𝐾𝑃𝐸

−1/2
𝐴𝐾𝐶𝑂

−1/2
 where 𝐾𝑃𝐸

⬚  and 𝐾𝐶𝑂
⬚  are the diagonal outdegree matrices for competencies and courses, 

respectively. (For details, see (He, Gao, Kan, & Wang, 2016)  and (Yang, Aronson, Odabas, Ahn, & Perry, 2022)). 
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Case Study  

The Mechanical Engineering program at Macquarie University was used as a case study. The 
software used was MATLAB and Python with custom developed code. The program and course 
requirements data were taken from the publicly available course handbook. The structure of the 
program is shown in Figure 3 (see also Figure 1), where the number of courses for a component is 
in parentheses.  

Figure 3: Structure of program 

All courses were considered excluding free electives, except that one free elective was used for an 
option course. Most of the technical and spine courses included a mapping of learning outcomes to 
a set of standard competencies based on the Engineers Australia Stage One Competencies (see 
Table 1). The contribution a course made to the development of a competency was calculated as 
follows. First, the assessment weight was divided equally between each course learning outcome 
associated with the assessment item. Then the total contribution to each learning outcome was 
obtained by summing over the contributions of each assessment item. Then, the contribution of 
each learning outcome was divided equally between all the competencies that included it. Finally, 
the total course contribution for a competency was obtained by summing the competency 
contributions of each learning outcome. A bipartite graph was constructed to represent the mapping 
of courses to standardised competencies. The contribution of each course to each competency is 
shown on the heat map in Figure 4. The total program contribution to the development of each 
competency was obtained by summing the contributions of individual courses. The results are given 
in the final column of Table 1. The highest weights are for PE21, PE11, and PE32. The lowest 
weights are for PE14, PE34 and PE33. This can be used to make comparisons with the desired 
program outcomes and to make recommendations for change if necessary. 
 

Table 1: Engineers Australia Stage One Competencies used in Course Handbook 

Category Code Description Contrib.(%) 

Discipline 
knowledge 

PE11 Comprehensive theory-based understanding of the underpinning fundamentals 
applicable to the engineering discipline 

9.58 

PE12 Conceptual understanding of underpinning maths, analysis, statistics, computing 7.68 

PE13 In-depth understanding of specialist bodies of knowledge 7.33 

PE14 Discernment of knowledge development and research directions 2.38 

PE15 Knowledge of engineering design practice 5.61 

PE16 Understanding of the scope, principles, norms, and accountabilities of 
sustainable engineering practice 

3.88 

Generic 
design and 
project 
skills 

PE21 Application of established engineering methods to complex problem solving 10.80 

PE22 Fluent application of engineering techniques, tools, and resources 8.57 

PE23 Application of systematic engineering synthesis and design processes 7.78 

PE24 Application of systematic approaches to the conduct and management of 
engineering projects 

5.86 

Profession-
al skills 

PE31 Ethical conduct and professional accountability 5.31 

PE32 Effective oral and written communication in the professional and lay domains 9.56 

PE33 Creative, innovative and pro-active demeanour 3.80 

PE34 Professional use and management of information 2.69 

PE35 Orderly management of self- and professional conduct 5.00 

PE36 Effective team membership and team leadership 4.06 
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Figure 4: Mapping of courses to competencies 

 
Figure 5: Dependency matrix courses 

Competencies were categorised as discipline knowledge, generic engineering design and project 
knowledge, and professional skills. The courses were classified as technical and spine. The 
contributions different types of courses made to different types of competencies were determined by 
summing over sets of courses and competencies (see Table 2).  

 

Table 2: Competency contributions to program Table 3: Competency contributions per course 

Competency 
Course       t 

Discipline  Design Professional Totals 

Technical 32.97 22.12 11.12 66.22 

Spine 3.54 10.92 19.33 33.78 

Totals 36.54 33.04 30.45 100 
 

Competency 
Course        

Discipline Design  Professional Totals 

Technical 48.79 32.74 16.46 98.00 

Spine 10.47 32.31 57.22 100 

Totals 36.02 32.60 30.05 98.67 
 

 

The contribution of all courses to each competency was slightly more than 1/3 for the discipline 
competencies, approximately 1/3 for the design competencies, and slightly less than 1/3 for the 
professional competencies. A prominent feature was the small contribution the spine made to 
discipline competencies. In Table 2, there are more technical courses (14) than spine courses (7). 
Table 3 shows the percentage contributions per course. Unsurprisingly, technical courses 
contributed more to discipline competencies, and spine courses contributed more professional 
competencies. The technical and spine courses contributed roughly equally to the design 
competencies. The entries for the dependency matrix are shown in the heat map in Figure 5. Strong 
dependencies exist from spine courses to other spine courses, between early technical courses and 
from ENGG4001 to other spine courses. MECH4002 is an anomaly with low dependence. Figure 6 
shows the dependency coefficients obtained from the projection onto the courses. The highest-
scoring courses were MECH4001, MECH3003, MECH4092 (see the Appendix for the list of course 
names). Of the spine courses ENGG3000 stands out. These courses are leaders that develop 
competencies that follower courses develop (e.g. the followers of MECH4001 in Figure 7 have 
higher weights in the same row, such as the spine courses, MECH3005, MECH4093) and provide 
suitable places for lateral coherence. Low-dependence courses include MECH1001, MECH3005, 
ENGG4001 that contribute to a limited set of competencies. Figure 7 shows the competency 
dependency scores. The highest scoring competencies were PE34, PE24, and PE14. PE32 
(communication) stands out as a professional competency with low dependence suggesting further 
investigation as to why this is so. 
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Figure 6: Course dependency scores 

 
Figure 7: Competency dependency scores 

 
Figure 8: BiRank competency scores 

 
Figure 9: BiRank course scores 

BiRank analysis was conducted on different groups of courses and different groups of 
competencies, by reducing the overall bipartite graph as appropriate. The values of the BiRank 
parameter were 𝛼 = 𝛽 = 0.7. Figure 8 shows the BiRank scores for the group of all competencies in 
different course groups. The BiRank ordering is almost the same as that given by descriptive 
analysis, regardless of the group of courses. This is because the sum of competencies equals one 
for each course (except for one course that did not assign a learning outcome to any competency). 
In the group of all courses, the competencies with the highest ranking were PE21, PE11, and PE32. 
The lowest ranked were PE14, PE34, and PE33. Across the group of technical courses, discipline 
competencies were preferred, while within the group of spine courses, professional competencies 
were preferred. Figure 9 shows the BiRank scores for the group of all courses when the bipartite 
graph is restricted to different groups of competencies. In this case, the competency contributions 
for a course do not add up to one, and the BiRank scores are different for different groups of 
competencies. Among the group of discipline competencies, technical courses were favoured and 
spine courses had a much lower rank. Over the group of professional competencies, spine and later 
year technical courses were preferred while early year technical courses had a lower rank. For 
design competencies, both spine and technical courses contributed similarly, although there was 
variation within each group. When PageRank is compared to indegree, indirect network effects 
occur, typically producing a smoothing of scores (results not shown).  

Competency development 

The analysis of program-wide competency development was performed using unimodal course 
graphs in which knowledge is accumulated by progressing through courses. The graph links 
represent the prerequisite relationships between courses. Our focus is on the flow of knowledge 
where prerequisites specify the knowledge that is essential or desirable for success in a course (see 
Figure 1). (Although we recognise that prerequisites can be used to accomplish other goals such as 
helping instructors understand and manage student deficiencies, be used as used gatekeepers 
(Hriez & Al-Naymat, 2021), and be used by administrators for planning.). Two perspectives were 
used to construct the graphs. In the bottom-up perspective, earlier courses are a foundation upon 
which new knowledge is built. This leads to a directed graph where prerequisites point to the 
courses they support. We call this graph the forward graph. The indegree of a course is the number 
of prerequisites the course has. PageRank includes the indirect influence of earlier courses that 
have been passed through prerequisite courses. For high PageRank courses, there are challenges 
of integrating concepts or selectively using concepts from a large palette of possibilities (Aldrich, 
2015). Such courses require greater use of high-order skills in Bloom’s taxonomy to analyse, 
evaluate, select, and combine concepts (Lightfoot, 2010). General principles for organising 
sequences of courses include the following (Ornstein & Hunkins, 2018): 
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• Simple to complex learning 

• Part-to-whole learning: The assumption is that certain bits of knowledge must be 

comprehended before other bits can be understood. 

• Whole-to-part learning: The focus on giving an overview first. 

• Chronological learning: Topics are presented in order of occurrence (e.g., as in history). 

• Concept-related learning: The focus is on knowledge structure and interrelationships. 

• Inquiry-related learning: Learning reflects the processes of scholarly investigation. 

• Learner-related sequence: The focus is on student learning experience and activity. 

• Utilisation-based learning: The focus is on how practitioners use knowledge in the world. 

In the forward graph, the sequence of courses typically involves simple-to-complex, part-to-whole, 
and concept-related learning.  

The top-down perspective is based on requirements satisfaction, where the program end goals and 
requirements are passed back to earlier courses. This is the basis for backward curriculum design. 
This leads to a directed graph where successor courses point back to the courses they follow. We 
call the resulting graph the backward graph. The indegree of a course is the number of successor 
courses that a course has. PageRank includes the influence that has been received indirectly from 
later courses. High PageRank courses are considered fundamental and provide a useful place to 
present introductory material and 'framework' concepts. (Lightfoot, 2010). (Aldrich, 2015) describes 
such courses as information sources. The sequence of courses is based on utilisation-based 
learning and whole-to-part learning. However, since these courses are required by a greater variety 
of successor courses, there is a pedagogical challenge in preparing students to learn successfully in 
a wider range of contexts, including the workplace context. In the transfer model of learning 
(National Research Council, 2000), new learning involves a transfer based on previous learning. 
Transfer is typically improved when students learn to use general principles. In an undirected graph. 
influence is acquired from all adjacent nodes and high connectivity is favoured. An analysis of the 
undirected graph is not included.  

Prerequisite analysis 

The prerequisite analysis was conducted for all courses in the program, except free electives. For 
simplicity, prerequisites and corequisites were treated equally. To ensure that there were loops in 
the graph, a link from EXIT to ENTRY was included. Figures 10 and 11 present results for the 
indegree and PageRank measures for the forward and backward graphs, respectively. The courses 
are shown on the horizontal axis, and are grouped from left to right into spine, science, and 
discipline courses. PageRank used the value 𝛼 = 0.5.  

In the forward graph (Figure 10Figure 10), high PageRank courses were mostly technical courses of 
the next year, indicating the high level of integration of these courses. Spine courses had a 
moderate ranking, indicating the involvement of a variety of generic and design skills. The early 
science and discipline courses had lower PageRank values. These courses tended to focus on a 
single conceptual area. Anomalous courses were as follows. Courses with high PageRank and low 
degree included MECH4093, ENGG4093, and ENGG4001. These courses receive indirect 
influence and express the need to continue the integration of knowledge from prerequisite courses. 
Courses with low PageRank and higher indegree included MECH2004, MECH2003, MECH2002, 
and MECH2001. These courses have prerequisites that are shared by multiple other courses.  

In the backward graph (Figure 11), higher values of PageRank are seen for foundation courses in 
science and the discipline. These courses need to be well designed so that knowledge can be 
effectively transferred. Later year technical courses tended to have lower PageRank. Anomalous 
courses were the following. High PageRank courses with low indegree included PHYS1510, 
MECH4092, and ENGG1000. These courses need to consider not only transfer to the successor 
courses, but also subsequent courses. Courses with low PageRank but with higher indegree 
included MECH3004, MECH3002, MECH3001, MECH4002. Low PageRank suggests that less 
consideration may be given to successors, allowing more flexible teaching. 
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Graphs for courses where a standard set of competencies is specified 

The competency mapping information was then included in the study of prerequisite graphs. This 
information was only available for technical and spine courses, and the graphs were reduced to 
include only these courses. In this case, the influence of a prerequisite course in the forward graph 
and the influence of a successor course in the backward graph depended on the degree of 
alignment of the course competencies. The degree of alignment was represented as a link weight 
that was calculated as the cosine of the angle between the vectors of competency contributions for 
the two courses joined by the link. Unweighted versions of the graphs were used for comparison.  

  
  

Figure 10: Forward graph for all courses Figure 11: Backward graph for all courses 

   
Figure 12: Forward graph with competency 

alignment 

 
Figure 13: Backward graph with competency 

alignment  

In the forward graphs (Figure 12), the unweighted and weighted graphs had a similar shape, with 
the later technical courses and the spine courses having greater influence. Somewhat surprisingly, 
the early MECH courses had the smallest ranks. When competencies were included, the greatest 
increases in ranks were for MECH3004 and MECH3003, indicating closer alignment with 
prerequisite courses. In the backward graph (Figure 13), unweighted and weighted graphs had a 
similar shape. MECH1001 stood out as one of the most influential courses by far. However, 
competency alignment reduced its rank, suggesting course designers need to consider carefully 
how successor courses continue knowledge development. The greatest increases in ranks when 
competencies were included were for MECH2005 and ENGG2000, indicating an increase in 
alignment with the successor courses. 

Conclusion 

The application of graph theory was found to be an insightful technique for determining the actual 
levels of competency development in a program, determining which courses contributed most to 
developing specific competencies and vice versa, and investigating the complex relationships in 
programs resulting from the sequencing of courses and the dependencies between courses. 
PageRank allowed the influences of non-immediately connected courses to be included. The tools 
developed can be used to assess actual outcomes against desired outcomes and enable 
anomalous courses and competencies, whose influence may have been under- or over- estimated, 
to be detected and be suggestive of further investigation and action. Software run times were only a 
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few seconds allowing a quick turnaround for analysing different factors; however, data entry took 
longer, with a semi-automated conversion from the handbook being used. Analysis of knowledge 
growth and requirements and use of the forward and backward graphs, respectively, identified 
pedagogical issues and highlighted courses that require additional resources. Future work involves 
improving the software user interface and the comparison of multiple programs to understand 
structural relations that involve discipline, design, and professional skills. 

Appendix 
Table 4: List of courses in the Mechanical Engineering program 

Science Spine Discipline 

COMP1000 
Introduction to 
Computer 
Programming 
MATH1010 
Calculus and Linear 
Algebra I 
MATH1020 
Calculus and Linear 
Algebra II 
MATH2055 
Engineering 
Mathematics II 
PHYS1510 
Engineering Physics 

ENGG1000 
Introduction to Engineering 
ENGG1050 
Engineering Design 
ENGG2000 
Engineering Practice 
ENGG2050 
Engineering Systems and Design 
Thinking 
ENGG3000 
Engineering Project Practice 
ENGG3050 
Engineering Leadership and 
Entrepreneurship 
ENGG4001 Professional Practice 

MECH1001 
Introduction to 
Mechanical 
Engineering 
MECH2001 
Engineering Dynamics 
MECH2002 
Fluid Mechanics 
MECH2003 
Mechanical Design 1 
MECH2004 
Mechanics of Solids 
MECH2005 
Engineering Materials 

MECH3001 
Thermo-dynamics 
MECH3002 
Heat and Mass 
Transfer 
MECH3003 
Mechanical Design 
2 
MECH3004 
Applied Numerical 
Engineering 
MECH3005 
Manufacturing 
Engineering 

MECH4001 
Product Design Engineering 
MECH4002 
Energy Sustainable Design 
MECH4092 
Mechanical Engineering 
Research Thesis A 
MECH4093 
Mechanical Engineering 
Research Thesis B 
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