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CONTEXT  

The impacts of subject study order on student success are nuanced, difficult to measure, and 
inherently interconnected to a number of other factors. Universities typically use intuitive or crude 
statistical approaches to judge the effectiveness of course “layouts” and any changes to them. 

As a diversity of degree offerings becomes the norm, it is imperative to establish flexibility in 
course progression so that capable students are not unjustifiably delayed or discouraged in their 
studies. Tools that can capture the importance of certain course properties are crucial in the 
validation of both traditional inputs and novel course layouts that empower students. 

PURPOSE 

This study aims to produce a quantitative framework to validate qualitative human observations 
regarding course progression and student success. Drawing from an hypothesis, the framework 
should provide insight into the relative significance of course layout choices, and their impact on 
performance. This framework may also be applied to verification on an individual basis, to 
support student advisors in recommending the most effective pathway to mitigate the effect of a 
failure on a student’s ultimate goals. 

APPROACH 

This work develops a tool that uses a simple Machine Learning (ML) model to provide insight, via 
interpretability techniques into the relative importance of different aspects of prior study on 
student performance in a target subject at an aggregate (cohort) level. This tool can then be used 
to validate human driven hypotheses and insights.  

The tool ingests processed numerical data drawn from a student’s prior studies at university. This 
data is broken down into three indicators calculated for all of prior studies - grade category, time 
since attempt, and attempts required to pass.  

ACTUAL OUTCOMES  

A selection of mechanical engineering and electrical engineering subjects were selected for 
analysis. Neural network models were able to consistently identify fail grades with an average 
accuracy of 93.6%. The model is effective at identifying subjects that contain relevant skills or 
knowledge beyond the ‘direct’ requirements defined by official prerequisites. In many cases, 
these subjects were stronger predictors of performance than prerequisite subjects. 

CONCLUSIONS 

This study shows the potential of ML techniques to assist academics in identifying significant 
factors that influence student success. The models generated are suitable to incorporate into 
program design processes to identify opportunities imperceptible to traditional analyses. 
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Introduction 

This paper focuses on an implementation of Machine Learning (ML) Neural Networks (NNs) to 
estimate the impacts of prior educational outcomes on the success or failure of a subsequent 
subject. In an engineering course with significant freedom of study sequence, optimal pathways 
could be identified based on past student results. This approach may allow an approach to 
course (program) design which focuses on threshold concepts, heretofore unidentifiable, for 
study progression, rather than a traditional focus on prerequisite content.  

For example, when asking whether a student should be allowed to study Fluid Dynamics II 
without having successfully completed Fluid Dynamics I, course designers ought, perhaps, 
consider more than the two-step progression implied. Instead, appropriate analysis may point to 
other skills, outside of the field of Fluid Dynamics that are true precursors to success in this 
subject. 

While many ML approaches have been implemented to predict student success, this study 
intends to prove a concept which could be implemented in the redesign of a course as well as the 
evaluation of any changes made. 

Ethical approval for this study was granted by the Monash University Human Research Ethics 
Committee (MUHREC) with approval number 38711. 

Background 

Machine Learning can be used to predict behaviour in many, varied domains (Hohman et al., 
2017), and offers improved predictive performance when compared to logistic regression 
(Senders et al., 2018). It is recognised that education and its associated field of learning analytics 
have potential benefit in the application of these methods with the aim of improving educational 
outcomes (Han et al., 2024).  

ML techniques of various types (Balaji et al., 2024) have been applied to predict student 
performance in educational settings. Random Forest models are judged by Han et al. (2024) to 
demonstrate the lowest standard error and highest correctness among a group of models which 
includes Logistic Regression, Random Forest, K-Nearest Neighbours, Support Vector 
Regression, and Gaussian Naive Bayes when forecasting course results (learning outcomes in a 
subject, based on learner data from various sources).  

Cumulative grade point average is, unsurprisingly, the most frequently used attribute when 
predicting educational outcomes (Rahul & Katarya, 2023). This equates to a statement that 
strong students will continue to be strong in the future, while weaker students will remain 
relatively weak; also a general finding of Asif et al. (2017). While such analyses are useful when 
informing student interventions or predicting student dropout (Bottcher et al., 2020), they are less 
constructive when informing the design of a course (program of study). Other approaches use 
psychological and behavioural data (Saha et al., 2023) or other demographic and study habit 
attributes (Limanto et al., 2023) to predict student performance, but with similar shortcomings.  

At the same time, “the application of…machine learning techniques in educational mining 
[(learning analytics)] is still limited” (Balaji et al., 2024), primarily to this aim of informing individual 
student predictions (Senders et al., 2018; Sahiri et al., 2015). While useful in the classroom, 
larger scale course modifications are not enabled by the various, established approaches. 

Method 

Where established approaches are inappropriate for making large scale observations about a 
course, we propose a class of small, cost efficient models that can be used together to inform 
course design validity and potential academic risk factors. Contrary to traditional statistics 
approaches, using machine learning provides a mechanism for the analysis of large, complex 
multivariate datasets without requiring expert knowledge. 
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Given the multitude of possible subject orderings and course combinations common at Monash 
University, it would be a highly difficult task to attempt to create a single general model that is 
able to capture all of these interactions within an acceptable computational budget. A simple 
neural network template is instead used to facilitate the training of a family of similar models for 
single subject prediction on a subset of data relevant to those subjects. Once such models are 
constructed and trained, we utilise a suite of result visualization and analysis tools to compare 
and interpret results between subject models. 

Data Collection 

Data is collected from university databases and anonymised by ID hashing, and the deletion of 
other identifying fields before storage, with the hash key securely held by the chief investigator. 
The data entails an entry for every subject attempt by every student enrolled in any Faculty of 
Engineering subject over a period of interest. Entries include subject result, grade, mark, date 
and the unique (hashed) student identifier to build training examples across multiple subjects. 

Data Filtering and Preparation 

In order to generate training examples, the dataset is filtered to extract a subset of factors into an 
embedding that captures key information about a student’s studies before attempting a subject of 
interest. For each student-subject pair, we identify 3 key factors: Mark - representing bins of 
performance categorised by the numerical mark (0-100), Time, representing how long ago (from 
the point of view of the subject of interest) a student passed the prior subject, and Attempt, which 
is used to identify students who have not yet attempted a subject (eg if a student has made a 
different progression decision, or it is an elective subject), and also as a metric for personal 
challenge, i.e. the number of attempts it took the student to pass the subject. 

Machine learning techniques have a tendency to overfit to a dataset when the available 
information is sparse (Dabrian et al., 2023). As a result of the wide range of electives and courses 
offered to students, there are approximately 5000 individual subjects that have been taken by 
engineering students during the period of our dataset with almost 4000 of these being taken by 
fewer than 100 students across the entire available dataset. To prevent the proposed models 
from overfitting to these rare occurrences, the dataset was trimmed to include only core subjects 
for engineering specialisations as well as common first year subjects and popular electives. 

Further filtering is applied to the raw mark field for each subject to generate ‘bins’, each 
representing a range of grades. This reduces sparsity as the number of grade categories 
(ranges) to decide between is strictly limited. Categorisation also presents the possibility of 
performing hyperparameter sweeps over boundary values to identify underlying clusters of 
students in different contexts. A larger and more complex model could potentially be used to 
predict a numerical output, but this would require additional compute resources relative to the 
model employed and result in less useful predictions.  

The raw dataset also contains many flags around academic progress, for example, various 
categories of withdrawn results which provide context to a grade of 0. These entries, and other 
similar edge cases, are removed as they do not significantly contribute to course structure 
insights. This choice allows us to simplify the representation of a ‘0’ mark in the embedding 
vector, corresponding to only a non-attempt (if Attempt is 0) or an actual mark of 0. 

We propose that this feature selection is sufficient to represent a student’s performance in a 
given subject. Mark is used to represent level of knowledge attainment at the end of the subject, 
Time represents the potential decay in familiarity with the material as time passes, and Attempts 
proposes to reflect difficulty with the subject (previous failure), and alternate course choices. 
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Data Transformation 

Given that we want to generate models for many different subjects, the role a subject plays in the 
dataset can be a predictor of another result, or it can be the ‘ground truth’ used to train its own 
model. We call this second role the predictee subject.  

As each model is designed to make predictions regarding a single subject (the predictee), the 
data must be transformed to the perspective of that subject. This requires the transformation of 
each of the time entries to represent the number of semesters that have elapsed between the 
completion of the corresponding predictor subject and the predictee, as shown in the equation 
below: 

𝐸𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 =  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑒 𝑡𝑖𝑚𝑒 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑡𝑖𝑚𝑒  

Once this time value has been adjusted, any predictor subjects taken by a student after, or at the 
same time as, the predictee (which are identified by a 0 or negative values for relative, elapsed 
time) are removed from the embedding to avoid creating an anti-causal system which would not 
be of use for making predictions on new data. The mark value for the predictee subject 
corresponding to the expected grade category is also separated from the embedding. 

Before using this processed data to train a model, it is important to apply some kind of balancing 
to the dataset. Machine learning algorithms, when provided with an uneven dataset (significantly 
more of one class of data entry than others), tend to favour the majority class (Krawczyk, 2016).  
Regarding overall academic performance in a subject, fail grades are typically a relatively small 
percentage of overall results, and most subjects have some form of normal distribution that leads 
to imbalance in the broad category ranges.  

To mitigate the impact of data imbalance, the SMOTE data-augmentation technique is applied 
alongside over-sampling to synthetically generate plausible samples for underrepresented 
classes, resulting in a more even proportion of samples. SMOTE uses multi-dimensional 
interpolation to generate synthetic but representative samples for these datasets. This technique 
is superior to simple oversampling as it reduces the risk of overfitting to repeated single data 
points. Note, SMOTE is agnostic of any meaning assigned to inputs or relationships between 
them, as such the interpolated samples lack the practical meaning that the original samples have.  

Model Design 

The architecture of the proposed network determines how accurately the model may be able to 
perform as well as its training and analysis cost. Initially a simple neural network consisting of 
only linear layers was used. To better capture the relationship between groups of three key points 
(mark, attempt and time), a convolutional layer was introduced. Convolutional layers are 
generally used in image processing to identify significant types of features from groups of pixels. 
When applied to our dataset, the convolutional layer groups together the three elements of each 
subject and is able to learn an appropriate combination function to build a single numerical 
representation of ‘knowledge’ for that subject.  

As our application requires models that are sufficiently low cost to be able to be retrained 
repeatedly across many different subjects and datasets, the final model architecture consists of 
only 4 layers (3 linear, 1 convolution) separated by ReLU and Dropout layers to reduce overfitting 
and increase the probability of convergence.  

Before training the model, the dataset is split into three sections: a training set that will be used to 
inform the model’s parameters, a validation set to check the model’s progress during training (to 
avoid overfitting) and a test set that once the model has been trained, can be used to verify the 
accuracy of the model with data that has not be utilised during the training process. 

The model is trained on a standard proportion of 72% of the available data, with a batch size of 
10 using cross entropy loss to compare predicted and truth values. It is validated between each 
training step with 8% of the data. Once the model has been trained on the train and validate 
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datasets, the previously set aside data (20%) is run through the model and compared with the 
known truth values as a final check that the model has not overfitted to its training data. 

Result Interpretation 

Neural networks with their hidden layers and complex decision paths are famously lacking in 
interpretability (Zhuoyang & Feng, 2023). To allow useful observations to be made using these 
models, we choose to apply two primary toolsets: standard metrics and Shapley Value Analysis. 
The standard metrics report gives information on: a) model precision, which highlights how many 
of the predictions a model makes of a class are correct; b) recall, which provides an indicator of 
how many elements of a class were correctly predicted, and; c) an F1 score, which combines 
both precision and recall to represent general predictive performance per class in the dataset. 
The F1 score is used to measure the performance of the model, and highlight categories that the 
model struggles to predict. 

Once the model has been verified with the above statistics, we can apply Shapley value analysis 
to determine the relative importance of different input factors on a model’s predictions on an 
individual class scale (Shapley, 1953). This technique, initially proposed for applications in game 
theory, iteratively removes features from a section of data, measures the change in output 
prediction and uses this to inform the impact of each feature on a model’s output (Merrick and 
Taly, 2020). This will allow a user to draw approximate conclusions regarding which subject 
performances have a significant impact on performance in a predictee subject as well as 
identifying through comparison which factors may have a larger than average impact on the 
distinction between failure and passing. 

Results and Discussion 

Model Analysis 

A first consideration is the computation complexity of this model. This simple model, containing 
only 8700 parameters, can be effectively trained on a regular personal computer without the need 
for expensive GPU accelerators. The models presented in this paper were generated using a 
2020 MacBook with an i5 quad-core processor, taking an average wall clock time of 3 minutes, 
and a worst case time of under 6 minutes to train. All models converged, although 2 models 
needed to be reinitialised and retrained in order to converge. This is not a major issue, as the 
computation cost at this phase is minimal.  

Unusually for ML processes, the inference for the interpretation phase is significantly more 
expensive than the training phase, taking around 2 hours on the same hardware to simulate the 
interactions of features in the data drawn from a sample of 800 students. This phase could be 
significantly improved by the parallelisation of the implementation and the usage of a GPU. 

Selection of category boundaries (bins) is a key determinant of performance, and represents the 
hyperparameters of this system. Initial experiments using university grade boundaries did not 
lead to satisfactory accuracy, leading to the reduced categorisation presented here. Breaking a 
student’s performance into “Failure”, “Pass”, and “Good” categories signifies the tradeoff between 
providing enough depth to allow for course design decisions without sacrificing accuracy. 

Figure 1 presents a sweep over several choices. The variance in performance across slight 
differences in the edge cases is evidence of the underlying complex groupings or clusters in the 
data, which vary between types of subjects, areas of study, and year levels. Most reasonable 
choices produce good results, with the optimal choice depending on the specific subject. 
Performing a binary classification (Pass or Failure) performs very strongly, and has potential to 
be used to identify common failure pathways directly, but provides less input on the majority of 
students who do pass, and is less useful in the context of generating course structure insights. 
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Figure 1: Sweep over a selection of boundary conditions for a sample subject from electrical 
engineering. These results demonstrate the rate of failing students each model successfully 

predicts, and the overall correctness of each model’s predictions, weighted by the relative number 
of students in each category of the test set. 

While analysis of individual categories and weighted accuracy is helpful for comparison across 
models and settings, it obfuscates a key piece of information evident in the confusion matrix 
presented in Figure 2 for the same subject as in Figure 1. Confusion matrices map the rate at 
which the model predicts each student category against the true category that student should 
have obtained. This reveals that this model (common to all subjects examined) is not ‘equally’ 
wrong when it selects the wrong category - it tends ‘miss by one’ category in most cases, and 
also tends to bifurcate the data between ‘failing’ and both ‘passing’ categories, to a extent that 
varies on the subject, but correctly predicts fail grades at an average rate 93.6%. 

This view must also be considered to determine the best general categorisation for the group of 
subjects under consideration. For this paper, we have analysed a group consisting of all unique 
Mechanical and Electrical engineering core subjects across 3rd and 4th year, which means we 
are considering several potentially distinct underlying clustering patterns. We have therefore not 
tried to optimise the category borders for any one subject or area, and have adopted a relatively 
simple mapping of 0 to 49 as representing ‘Failing’, 50-69 as representing ‘Passing’ a subject, 
and 70 or above as achieving a ‘Good’ level of understanding, which are drawn from combining 
Monash University’s grade boundaries. 

 

Figure 2: Confusion Matrix demonstrating the distribution of incorrect guesses for each class. This 
analysis has been performed on the model for the same subject presented in Figure 1, using the 

boundaries Fail: 0-49, Pass: 50-69, Good: 70-100 boundaries.  

The model family is able to generalise and provide accuracy significantly better than random 
prediction over the range of subjects examined in this study, achieving similar performance in 
terms of generalised precision, as shown in Figure 3. This general applicability to engineering 
results without fine-tuning gives confidence to the following analysis on model interpretation. 
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Interpreting Subject Relationships  

Using the Shapley technique, we observe the relative strength of the contribution of each factor. 
We present a 3rd year electrical engineering subject covering networking topics in Figure 4 as an 
example. This subject was chosen as an interesting analysis case for a number of reasons: it is a 
foundational subject that unlocks many electives, the authors are familiar with the subject, 
allowing us to act as subject matter experts, and there are no specific prerequisites, leading to a 
broad range of student experiences around prior subjects and placement with their degrees. 

 

Figure 3: Comparison of model performance by subject across two disciplines. Discipline averages 
are also presented, with an overall average of 72% achieved across all models. 

The percentage of blue weighting in each bar of Figure 4 demonstrates one of the consistent 
observations around the performance of these models, which is that they spend a 
disproportionate amount of effort on the classification of failure, which is also reflected in Figure 
2. This is a reasonable priority of a tool to identify failings within a course structure, but limits the 
accuracy of the model in differentiating higher performing students more clearly. A potential future 
refinement is to separate the training into a pass-fail model and a specific grade model, which 
should significantly improve performance. 

Figure 4 demonstrates the importance of marks in predictions, as 57% of the factors identified are 
grade categories. This demonstrates that categorised marks are a reasonable predictor of future 
performance, and there is a correlation between relevance of material and prediction strength. 
Another strong correlation is with similar assessment styles, such as a second year digital, or a 
structures & design subject in first year, correlating to the open project in this subject. This 
demonstrates that subjects that teach ‘engineering thinking’ in other contexts clearly impact 
performance later in the degree. This was not an obvious observation to us a priori. 

In general, timing of subjects is not a significant factor, but the timing of key subjects, such as the 
common first year maths, alludes to patterns in progression (i.e. foundation subject requirements 
result in different orders, leading to different levels of success). This is an example of a potential 
gap in support that needs further investigation and potentially different advice or resources. The 
timing of the core 2nd year circuits most likely correlates to the cohort who are in double degrees, 
underloading and/or have failed at least one core subject, who may be on different paths that 
again needs unique advice. The lack of time factors also implies that the expected ‘degradation of 
skills with time’ effect is relatively unimportant in predicting performance later in the degree. 

The presence of a significant subject attempts factor, such as 2nd year signals, corresponds to a 
subject that is the most similar in terms of material to the 3rd year networks subject. While 
performance in this subject is a more significant factor, the number of attempts captures students 
who have either completed it prior to networks (0), passed first time (1), or who needed more 
than one attempt (2+), which we would expect to significantly impact a prediction. 
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Figure 4: Shapley values for a given subject of interest, the same subject as in Figures 1 and 2. 
Values have been normalised and sorted such that the strongest contributor to an average (from a 

sample of 800) student’s result is at the top, with the relative importance of each subject decreasing 
down the y axis. Only factors >20% as strong as the top rank are included for clarity. 

Note that in many cases, pre-requisite subjects, though in the top 20 most significant features, 
are not the most predictive of outcomes in a subject. This suggests that mandated study 
progressions, in general, may not be as critical to success as has traditionally been held. In this 
specific case, a single elective subject reached the top 20 significant features threshold, and this 
was seen in other subject tests. This indicates that the list of core and non-core subjects 
analysed should be tailored specifically to the subject being modelled. 

Conclusion 

Neural networks of the type studied here show potential, with further refinement, to predict 
individual subject outcomes and allow the evaluation of study program pathways. Observations 
made from this analysis can contribute to and inform discussions with subject matter experts and 
program coordinators to guide optimisations and refinements as part of the course development 
process, where current techniques are largely qualitative. Using these models could potentially 
inform the validity of prerequisite listings as well as credit point requirements of individual 
subjects. Used in conjunction with qualitative evaluation, this approach could facilitate more 
effective course design. 

Additionally, these low-cost models could be used to provide study planning support to individual 
students, allowing them to find optimal ordering for a set of subjects, or to assess the academic 
impact of overloading or prerequisite waiving to reduce the guesswork of these processes. Future 
extensions could include additional data, such as previous withdrawn attempts, previous 
educational data (VCE, etc) or demographic data in order to better identify and focus 
investigation towards students in need of support. This could be used to automatically generate 
lists of potentially at-risk students that could be communicated to a subject’s examiner at the start 
of a semester to reduce manual workload.  
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