# Improving Safe System Intersection Performance

Fabian Marsh - Lead Advisor Safety



New Zealand Government

airu

### **Systemic design failures**

People are placed in circumstances where failure can be expected







### **Systemic design failures**

People are placed in circumstances where failure can be expected







### **Systemic design failures**

People are placed in circumstances where failure can be expected











Understanding and Improving Safe System Intersection Performance

New Zealand Government

### **Safe System intersections**



#### **X-KEMM-X** application examples

Probability of FSI injury at each conflict point



Assumes a crash will occur at full speed





Probability of FSI injury at each

#### **Roundabout (multi-lane)**

#### Urban signalised with vertical approach deflections



### Signalised intersections with raised safety platforms







TYPICAL SECTION - RAISED PLATFORM



### **Raised safety platforms**

#### Effectiveness

#### 40-50% reduction in injury crashes



Sourced from: Corben, B. F. (2014). Criteria for the use of elevated stop lines at traffic signals. Contract report for VicRoads prepared by Corben Consulting, August 2014.



#### Table 1. Safety effects of speed reducing facilities at signalised intersections

|                    | 'Intersection years' | Injury crashes per<br>intersection year | Total number of<br>crashes per<br>intersection year |
|--------------------|----------------------|-----------------------------------------|-----------------------------------------------------|
| Before (3 years)   | 120                  | 1.23                                    | 7.01                                                |
| After (4 years)    | 90                   | 0.74                                    | 4.50                                                |
| Effect in %        |                      | -39.6                                   | -35.8                                               |
| $\chi^2$ -test     |                      | 12.0                                    | 54.4                                                |
| Significance level |                      | 0.05                                    | 0.00                                                |

#### Notes:

1. Intersection year: sum of all (before or after) periods of the 40 intersections involved

2. Injury crashes: all types of injuries including minor injuries.

When two highly-congested intersections were removed from the sample of 40 intersections being evaluated, the reduction in casualties increased from 40% to 50%.

### **Raised safety platforms**

#### Thomas / Gordonton

- Upgraded with new signals
- Previously priority controlled intersection with 80km/h speed limit
- Lowered to 60km/h on approaches
- Stop line in advance of platforms
- Signal post locations designed according to new layout
- 50km/h design ramps (1:25 approach and 1:35 departure)





### **Thomas Gordonton (before)**

#### Crash history

- 34 Crashes in 5 years before
  - 4 serious
  - 10 minor
- 12 (35%) JA : Right turn right side
- 17 (50%) LB : Right turn colliding with through traffic
- 30 involved northbound vehicle on Gordonton Road







#### **Evaluation measures**

- Vehicle speed tubes, radar
- Road user behaviour video, braking, RLR, compliance
- Perceived Safety HCC customer feedback, informal observations
- Impact on Traffic flow expert feedback from HCC Engineer
- Vertical acceleration phone, accelerometer
- Development and delivery issues from HCC 'Lessons Learned'
- Council and community buy-in customer service channels







Vehicle speed





Vehicle speed - results

|                                          | Northbound |                                  | Southbound |                                  |
|------------------------------------------|------------|----------------------------------|------------|----------------------------------|
|                                          | All data   | <3 second<br>head way<br>removed | All data   | <3 second<br>head way<br>removed |
| Total vehicle count                      | 18423      | 12083                            | 25623      | 15639                            |
| 85 <sup>th</sup> percentile speed (km/h) | 41         | (43)                             | 44         | (46)                             |
| 95 <sup>th</sup> percentile speed (km/h) | 49         | 52                               | 52         | 54                               |
| Vehicles over speed limit                | 0.7%       | 1.0%                             | 1.1%       | 1.6%                             |



Vehicle speed - northbound profile





Vehicle speed - southbound profile





Braking and road user behaviour



- Braking on approach
- Red light running
- Cyclists and pedestrians





- Stopping at limit line
- Cyclists and pedestrians



Braking behaviour



Braking behaviour



Stopping behaviour





Stopping location (through lane and turning lane)







#### Vertical acceleration



#### Results

|                        | Dimension                   | Satisfactory<br>Performance? |
|------------------------|-----------------------------|------------------------------|
| Safety improvement     | DSis                        | Too early                    |
|                        | Intersection<br>Speed       | $\checkmark$                 |
| Associated safety      | Braking on approach         | $\checkmark$                 |
|                        | Stopping at limit line      | $\checkmark$                 |
|                        | Red light running           | $\checkmark$                 |
|                        | Vertical acceleration       | $\checkmark$                 |
|                        | Perceived safety            | $\checkmark$                 |
|                        | Impact on VRUs              | Not enough data              |
| Delivery and operation | Traffic flow                | $\checkmark$                 |
|                        | Community buy-in            | $\checkmark$                 |
|                        | Delivery/operational issues | $\checkmark$                 |



#### Safe System design concepts

#### Innovation





#### Victoria

 Pedestrians and cyclists on raised safety platforms









#### Low cost treatment



Figure 4.5: Construction of the entry path of a single-lane entry



#### Mildura Rural City Council

Christopher Davis Road Safety Officer Mildura Rural City Council Ph. 0408 101 663

Courtesy of Chris Davis, Mildura Rural City Council



#### Low cost treatment





Day 1

Day 2







Day 3

Day 4





Day 5











#### Victoria

#### **RAISED Safety Platform**





Courtesy of Wayne Moon, VicRoads





Victoria





Victoria













Understanding and Improving Safe System Intersection Performance

New Zealand Government

### **Safe System intersections**





