Integrated Intervention Logic Model

Estimating the effect of multiple combined interventions

Paul Graham TRAFINZ Conference, Hamilton

Integrated Intervention Logic Model (IILM)

The Integrated Intervention Logic Model (IILM) is a tool developed by the NZ Transport Agency (NZTA) in partnership with key road safety stakeholders to inform strategies aimed at improving safety across the network.

The tool uses crash data and evidence-based research and models to estimate reductions in deaths and serious injuries (DSIs) based on a specific dose of each intervention working in synergy. Its purpose is to understand the combined effect of road safety interventions taking a systems-based approach, rather than a more basic model that simply looks at the effectiveness of single interventions. It includes a baseline projection of deaths and serious injuries against which the impacts of the interventions can be estimated. Ten interventions have been modelled to date.

A key objective of the IILM is to give greater assurance that we are investing in the right safety interventions in the right combination and at the right levels. It is more important to look at interventions as a package, rather than individually, as many of the interventions work synergistically. Users select a suite of actions and activities and prescribe the degree of each, and the tool calculates the cost and potential road casualty savings from that combination of interventions. The dependency, union, dominance or independent nature of the interventions are used in determining the combined effect.

The IILM also accounts for changes in effectiveness of an intervention over time dependent on the dose and the projected baseline casualties.

Our problem

No-one should be killed or seriously injured in a road crash

3,200 deaths and serious injuries per year

We have a suite of effective interventions

On average, one person dies on our roads each day and another seven are seriously injured.

One day, an app

Two interventions:reduce alcohol casualties by 25%reduce run off road casualties by 40%

1000 casualties, 30% from alcohol crashes, 20% from run off road:

casualties from	no alcohol	alcohol	Total
not run off road	560	240	800
run off road	140	60	200
Total	700	300	1000

Two interventions: reduce alcohol casualties by 25% reduce run off road casualties by 40%

Apply run off road intervention (-40%):

casualties from	no alcohol	alcohol	Total
not run off road	560	240	800
run off road	140 84	60 36	200 120
Total	644	276	920

Two interventions: reduce alcohol casualties by 25% reduce run off road casualties by 40%

Apply run off road intervention (-40%):

Apply alcohol intervention (-25%):

casualties from	no alcohol	alcohol	Total
not run off road	560	240 180	740
run off road	84	36 27	111
Total	644	276 207	851

= overall 15% reduction in casualties

Two interventions:reduce alcohol casualties by 25%\$10Mreduce run off road casualties by 40%\$20M

Apply run off road intervention (-40%):

Apply alcohol intervention (-25%):

casualties from	no alcohol	alcohol	Total
not run off road	560	240 180	740
run off road	84	36 27	111
Total	644	276 207	851

= overall 15% reduction in casualties

The next challenge

Estimating the effect of multiple combined interventions:

The four pillars of the Safe System are:

- Safe roads and roadsides
- Safe vehicles
- Safe people
- Safe speeds

Baseline projections

Overall decrease in deaths and serious injuries since 1990

Plateau around 3000 per year

Likely to remain at that level with existing road safety interventions

Road deaths and serious injuries 1990 - 2019

Explanatory data coverage

Economic

- GDP
- Unemployment
- NZ\$ Trade Weighted Index
- Interest rates
- CPI
- Construction
- Fuel price

Transport

- Vehicle fleet
- Mode distribution
- PT options
- Traffic offences
- Truck crashes
- M/cycle crashes
- Infrastructure risk

Societal

- Population
- Young population
- Older population
- Non-fatal injuries
- ACC claims
- Licence status
- Urban/rural profile

Explanatory variables

Scatterplots illustrate the relationship between explanatory variables

Pearson correlation coefficients stronger than 0.7 and -0.7 suggest relationships

- GDP and road deaths
- Population and road deaths
- Unemployment and road deaths
- Petrol price and population
- GDP and unemployment
- VKT and GDP
- VKT and unemployment
- Population and GDP
- Population and unemployed
- Trade Weighted Index (TWI) and GDP
- TWI and unemployment.

Colin Morrison and Ernest Albuquerque, Modelling New Zealand Road Deaths to 2025, Australasian Road Safety Conference 2019

Baseline projections

ARDL modelling road deaths – unadjusted results

Baseline projections

		<u>DSIs</u>
Subdivide casualty data by user types, road characteristics and	 vulnerable users - pedestrians, cyclists - and motorcyclists 	500 550
crash types	1 or 2 star car occupants	1300
	• 50 km/h zones	1100
Workable limits reached after 4 or 5 subdivisions	crashes on high risk roads	250
	 crashes involving excessive speed 	700
Recombine based on stable proportions over past several	alcohol-related crashes	450
years, and subdivide again	 head-on and run off road crashes 	1100
	intersection crashes	900

user			V	ULNE	RABLE				MO	TOR	VEHI	CLE				
m/cycle		M/C)	/CLE P			/CYC			MO	TOR	VEHI	CLE				
urb/rur	UF	RB	RI	JR	URB	RUR		UF	RB			RUR				
1 / 2 star		-		-	-	-	1.	2	-	-	1.	1/2		1/2 -		-
alcohol	А	-	А	-	-	-	А	-	А	-	А	-	А	-		
		-	-	-		Al	_L				-					
head-on				HEAI	D-ON					N	ΤС					
urb/rur		UF	RB		RI	JR		UF	RB			RI	JR			

• improve vehicle safety

user			V	ULNE	RABLE				MO	TOR	VEHIC	CLE		
m/cycle	M/CYCLE		PED	/CYC			MO	TOR	VEHIC	CLE				
urb/rur	UF	RB	RUR		URB	RUR	URB		B RUR					
1 / 2 star	-	-		-	-	-	1 /	2	-		1/2		-	
alcohol	А	-	А	-	-	-	А	-	А	-	А	-	А	-
			-	-		Al	_L							
head-on				HEAI	D-ON					N	ЭТ			
urb/rur		UF	RB		RI	JR		UF	RB			Rl	JR	

• reduce urban speeds

user		VULNE	RABLE			MOTOR	VEHICLE		
m/cycle	M/CY	(CLE	PED	/CYC		MOTOR	VEHICLE		
urb/rur	URB	RUR	URB	RUR	UF	JRB RUR			
1 / 2 star	-	-	-	-	1/2	1/2 - 1/2		-	
alcohol	A -	A -	-	-	A -	A -	A -	A -	
				A	LL				
head-on		HEAI	D-ON			N	ТС		
urb/rur	UF	RB	RI	JR	UF	RB	RI	JR	

Interventions

•	baseline DSIs related to underlying trends in petrol prices, unemployment and population of 15-24 yr olds	•	apply speed management treatments to further 7000 road segments, 8% DSI saving
•	50% increase in enforcement = 4.4% reduction in fatalities [Elvik 2012], across the network	•	already 300km median barriers, increasing to 1301km reduces DSIs at sites by 65%
•	29% of urban DSIs at 657 segments with SAAS=40 or 30, if lowered to 30km/h expect DSI reduction of 50% (40% m/c)	•	6614 high risk intersections on 3305 corridors, treatments reduce DSIs by 25%
		•	1399 intersections suitable for RLC, reduce red light
•	fitting ABS reduces motorcycle DSIs by 30%, applies to 45,000 bikes not yet equipped		running DSIs by 26%
		•	1248 rural corridors eligible for LCLR treatments,
•	increasing safety rating to 3+ reduces risk of DSI to 1/2 star occupants in crash by 33%		average 15% DSI reduction
		•	From 2007-2010, 1.2M increase in CBTs corresponded
•	440 suitable camera sites, 60 already installed, international review 20% DSI reduction at sites		with 30% decrease in alcohol DSIs
		•	Interlocks = 60% reduction in repeat offending, involved
•	applying speed management programme at 1785		in 10% alcohol-related DSI crashes, effectiveness 6%
	highest risk road segments, 27% DSI saving		(MoT 15%)

Intervention logics

Intervention logics

Speed management

Treat the top 10% highest risk road segments

1332 DSIs saved over 5 years = 266 per year, out of 5216 estimated total DSIs = 26%

Intervention logics

increasing safety rating to 3+ reduces risk of DSI to 1/2 star occupants in crash by 33%

Improve vehicle safety

Increasing safety rating to 3+ reduces risk of DSI to 1/2 star occupants in crash by 33%

IILM user settings

Predicted unemployment rate		2.80%
Predicted petrol price (cents/litre)		216.89
Effectiveness decay rate		6%
Urban speed reduction multiplier for non ped/cyc		0.1
Speed management effectiveness for motorcyclists		1.5
Vehicle fleet settings	new scrappage 1/2 purchase 1/2 scrap 1/2 purchase 3+ scrap 3+ Turn off the tap	70000 20000 70000 150000 4% 2030

	Year 1 Year 2 2020 - 2023	estimated DSIs 11252	DSIs saved 639 6%	<u>Cost (\$M)</u> \$ 2,262 4 years
peed enforcement (from 900,000)	900,000	Corridors with intersection treatments	0 intsectns	
0 km/h urban corridors	0	Red light cameras	0	
lotorcycle fleet with ABS (from 30%)	30%	BOOST programme treatments	0	
let exit rate of 1/2 star cars (from 70,000)	100,000	Increased alcohol enforcement	0%	
peed management on Top 10% of network	500	Increase in alcohol interlocks	0%	
peed management on remaining 90%	0			
ledian barriers (from 300km)	600 km	Speed cameras (from 60)	60	

increase to 8 years

	R	Region	NEW ZEALAND	ו	
	Year 1 2020 -	Year 2 2027	estimated DSIs 21437	<u>DSIs saved</u> 1240 6%	<u>Cost (\$M)</u> \$ 2,382 8 years
Speed enforcement (from 900,000)	900,	000	Corridors with intersection treatments	0 intsectns	
30 km/h urban corridors	0		Red light cameras	0	
Motorcycle fleet with ABS (from 30%)	30%		BOOST programme treatments	0	
Net exit rate of 1/2 star cars (from 70,000)	100,	000	Increased alcohol enforcement	0%	
Speed management on Top 10% of network	500		Increase in alcohol interlocks	0%	
Speed management on remaining 90%	0				
Median barriers (from 300km)	600 k	cm	Speed cameras (from 60)	60	

increase urban treatments and alcohol enforcement

	Year 1 2020 -	Year 2 2023	estimated DSIs 11252	<u>DSIs saved</u> 1543 14%	Cost (\$M) \$ 3,789 4 years
Speed enforcement (from 900,000)	90	,000	Corridors with intersection treatments	1000 2195 intsectns	
30 km/h urban corridors	50	0	Red light cameras	0	
Motorcycle fleet with ABS (from 30%)	30	%	BOOST programme treatments	0	
Net exit rate of 1/2 star cars (from 70,000)	10	,000	Increased alcohol enforcement	50%	
Speed management on Top 10% of network	50	0	Increase in alcohol interlocks	0%	
Speed management on remaining 90%	0				
Median barriers (from 300km)	60	10 km	Speed cameras (from 60)	60	

increase vehicle safety

	Year 1 Year 2020 - 202	estimated DSIs 11252	<u>DSIs saved</u> <u>0</u> 2269 \$ 20%	<u>20st (\$M)</u> 4,729 4 years
Speed enforcement (from 900,000)	900,000	Corridors with intersection treat	tments 1000 2195 intsectns	
30 km/h urban corridors	500	Red light cameras	0	
Motorcycle fleet with ABS (from 30%)	30%	BOOST programme treatments	0	
Net exit rate of 1/2 star cars (from 70,000)	,000	Increased alcohol enforcement	50%	
Speed management on Top 10% of network	1000	Increase in alcohol interlocks	0%	
Speed management on remaining 90%	0			
Median barriers (from 300km)	600 km	Speed cameras (from 60)	60	

Strengths

- The models' ability to combine the effect multiple interventions allows it to:
 - gives a guide to the optimum mix of modelled interventions
 - shows the relationship between the "dose" of intervention and the projected effect on reducing DSIs
 - accounts for any overlap in interventions ie. avoids double-counting DSIs.

Assumptions

- Interventions will vary in both cost and impact over time.
 - Median Barriers will have an immediate impact and continue to do so for many years but will require maintenance investment.
 - Speed limits will have an immediate impact and low ongoing costs.
- Interventions work synergistically

 no single intervention will significantly reduce DSIs on its own.

Limitations

- The model will only work if there is robust data available for interventions already in place.
- It is a high level tool and cannot report to a regional level
 - Data becomes too granular when broken down by regions and cannot consider regional variations.
 - We are looking at the possibility of providing Auckland, Rest of North Island and South Island data sets.

