Bus Carbon Emissions Modelling

Chris Vallyon

And Victoria University

May 2021

- The material in this presentation predates my arrival at Waka Kotahi
- The work presented is work I have led, however:
 - I am not representing Waka Kotahi
 - I am not representing Greater Wellington Regional Council
 - Any views expressed are entirely my own

What are our targets?

G.P.S Transportation 2021 & Climate Change Response Act 2021

- 20% of NZ GHG is from transport
 - 90% of that is road transport
- Paris Accord:
 - Reduce GHG to 30% below 2005
- Climate Change Response Act:
 - Be net zero carbon by 2050
 - Zero Emissions Vehicles (2025)

Minimising and managing the risks from natural and human-made hazards, anticipating and adapting to emerging threats, and recovering effectively from disruptive events.

Transportation is a key intervention focus area

Previous Deferred Decisions require Ambitions Targets

Emissions are Trending Upwards

FIGURE 1

Source: Information is sourced from the IPCC's Fifth Assessment Report, Working Group 1 (emissions data, Figure 6.8; carbon budget, SPM E.8)

We're beginning to understand the problem

But can we quantify viable solutions?

Public Transport Carbon Modelling - Timeline

- 2017 Collaboration with Victoria University for new decision support tools
- 2018 improved bus loading/trip data became available
- 2019 Emissions Impossible provided formulae for bus emissions
- 2019/20 VUW developed tools to calculate emissions for each bus trip
- 2020/21 Carbon Footprint & Decarbonisation Scenarios
- 2021 Auckland Pilot Study

Ingredients (a.k.a. Data)

Bus Data / Fleet Lists:

- Bus Tare Weight
- Bus Euro Class

Trip data:

- Bus ID
- Trip distance
- Average speed
- Bus loading/mass
- Cancellations

Bus Fleet Emissions 2017 - 2019

- 2,900,000 recorded bus trips
- Emissions calculated for each bus trip

route	Trip id	vehicle	type	distance	time	speed	FC	CO2	NOx	со	HC	PM	Pax km	offset
50	1200	65	PRE-EURO	7.8	1500	19	7.064	18.819	0.197	0.111	0.068	0.018	138.415	29.239
50	1206	19	EURO1	7.8	1500	19	3.090	8.250	0.081	0.021	0.007	0.004	138.415	29.239
50	1204	19	EURO1	7.8	1500	19	3.090	8.250	0.081	0.021	0.007	0.004	138.415	29.239
50	1202	65	PRE-EURO	7.8	1500	19	7.064	18.815	0.197	0.111	0.068	0.018	138.415	29.239
50	1210	125	EURO3	7.8	1500	19	3.566	9.482	0.094	0.025	0.005	0.002	138.415	29.239
50	1208	19	EURO1	7.8	1500	19	3.090	8.250	0.081	0.021	0.007	0.004	138.415	29.239
50	1214	125	EURO3	7.8	1500	19	3.566	9.482	0.094	0.025	0.005	0.002	138.415	29.239
52	1312	165	EURO5	19.792	2820	25	8.305	22.204	0.081	0.028	0.002	0.001	138.415	29.239
52	1315	172	EURO5	19.462	3000	23	8.994	24.026	0.088	0.031	0.002	0.001	138.415	29.239
52	1316	144	PRE-EURO	19.792	2880	25	8.847	23.705	0.324	0.107	0.038	0.015	138.415	29.239
52	1303	165	EURO5	19.462	3000	23	8.479	22.660	0.083	0.029	0.002	0.001	138.415	29.239

The Changing Bus Fleet

Wellington Monthly Bus Emissions Trends 2017 - 2019

Emissions vs Speed

=

Changing Emissions Trends 2017-2019

How Wellington tackled it's non-GHGs

On-going investment required

Indicative Base Case: 108 Committed EVs 20,000 600 18,000 500 16,000 ANNUAL CO2E (TONNES) ANNUAL CO2E (TONNES) 14,000 400 **LEANNE AND CONTROL 100** 300 **STAR AND CONTROL 100** 200 **CONTROL 100** 12,000 10,000 8,000 6,000 4,000 100 2,000 0 2030

2021 2022 2023 2024 2025 2026 2027 2028 2029

💻 💻 🖷 EV Buses

Annual Bus Carbon Footprint

2019

Annual Bus CO2e

A 'peaky' problem

05:30 06:00 06:30 07:00 07:30 08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00 12:30 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:30 18:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30 23:00 23:30 00:00 00:30 01:00

Buses produce a wide range of emissions values

Range Anxiety

- Perception: Operating Range is a limitation
- Reality: this limitation is trivial
 - ✓ Buses can charge overnight
 - \checkmark <1% of bus activities exceed realistic battery range
 - ✓ Only minor operational changes required

We can calculate emissions/Carbon Offset by Route

Consistency is King

- New Zealand needs a Nationally Consistent method for calculating Public Transport Carbon Emissions
- To inform a common understanding of issues and interventions

The Scale of The Challenge

See also: Darek Koper's Poster Presentation 2:30pm session Tuesday

Questions?

P.S This isn't very likely $\rightarrow \rightarrow \rightarrow$

Residual Carbon - NZ Electricity Grid 2020 - 2050

Climate Change Commission Jan 2021

31 January 2021 Draft Advice for Consultation

Figure 3.13: Electricity generation by fuel in our path.

Source: Commission analysis.

Source: Commission analysis.

Global Temperatures are Trending Upwards

Climate Change Commission 2021

How does NZ Compare?

