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Abstract 

For decades, the pipeline industry has been collecting in line inspection (ILI) data for pipelines all 
around the world, in addition to an abundance of historical data on design, construction, operations 
and the environment. The availability of these datasets has led the industry naturally towards 
machine learning as a supporting technique for various integrity management activities. By 
observing trends from the past, we can better understand our current and future assets.  
 
One particularly promising application of machine learning is condition prediction in pipelines that 
cannot be inspected using ILI. This is the case for approximately 40% of the world’s pipelines.  
 
Previous work by the authors has demonstrated this concept using historical data from 
approximately 80,000 pipe joints in a gas distribution network in North America. The study resulted 
in a set of machine learning models for external corrosion prediction in the target network, with 
outputs of a sufficient accuracy and resolution to support decisions on repair, mitigation and 
pipeline modifications. 
 
This paper expands upon the previous work with a much larger dataset of almost 3.5 million pipe 
joints from multiple operators and countries in Europe. This represents a significant step towards 
the ultimate goal of “Virtual ILI”: a health monitoring solution that can be deployed to almost any 
pipeline system in the world.  
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Introduction 

Increasing volumes of in-line inspection (ILI) information have led the industry towards supervised 
machine learning as a complementary health monitoring solution for pipelines that cannot be 
inspected, or where ILI is otherwise contraindicated due to economic or operational constraints. If 
proven to be accurate and reliable, such a technique – a so-called Virtual ILI – could become an 
invaluable addition to thousands of pipeline operators’ integrity management programs. 
 
The fundamental idea is to learn trends observed within pipelines that have already inspected, and 
formalise these trends within a set of predictive models that can be applied to uninspected pipelines 
(Figure 1). 
 
 

 
 

Figure 1: Principle of “Virtual ILI” 

 
This can be applied for any pipeline threat that can be detected reliably using ILI, but the present 
study is focused on external corrosion. A Virtual ILI model for external corrosion may learn simple 
trends – for example that older pipelines tend to have a greater density of corrosion anomalies – or 
more intricate ones – such as the complex interactions between cathodic protection, coating, and 
the local environment. 
 
Previous work by the authors [1] has demonstrated this concept using historical data from 
approximately 80,000 pipe joints in a gas distribution network in North America. The study resulted 
in a set of machine learning models for external corrosion prediction in the target network, with 
outputs of a sufficient accuracy and resolution to support decisions on repair, mitigation and 
pipeline modifications. 
 
This paper expands upon the previous work with a much larger dataset of almost 3.5 million pipe 
joints from multiple operators and countries in Europe. Successful machine learning with a much 
more diverse, inhomogeneous dataset such as this would represent a significant step towards the 
ultimate goal of a health monitoring solution that can be deployed to almost any pipeline system in 
the world. 

Data Preparation 

The data for the study represented 755 onshore pipelines in Europe, inspected for metal loss 
between 2010 and 2020. A summary of the dataset is provided in Table 1. In addition to the 
inspection results (i.e. anomaly records) for these pipelines, the dataset included design and 
construction information at a pipe joint resolution, such as construction year and coating type. 
 

Supervised
machine learning

Uninspected pipeline Inspected pipelines
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Table 1: Summary of dataset 

Number of pipeline sections 755 

Number of pipe joints 3,443,896 

Inspection date range 2010–2020 

Number of external corrosion anomalies 1,157,386 

 
A number of condition metrics were calculated from the available ILI results. Condition metrics are 
aggregated values describing some aspect of the external corrosion condition within a section of 
pipeline. In the present case, the metrics were calculated at pipe joint resolution, i.e.  one value per 
joint. Three condition metrics were selected: anomaly density (anomalies m-2), relative corroded 
area (%) and maximum depth (mm). 
 
The dataset was further enriched using a number of open-source geospatial datasets from Europe, 
as described in Table 2. These provided additional environmental variables for the models. Example 
maps are shown in Figure 2. 
 

Table 2: Geospatial datasets 

Variable category Dataset source 

Crossings (roads, railways etc.) Geofabrik – OpenStreetMap 

Terrain Copernicus – EU-DEM 

Land use Copernicus – CORINE Land Cover 

Soil properties Esri – World Soils Harmonized Soil Database 

Precipitation Deutscher Wetterdienst – Open Data 

Socioeconomics (e.g. income group) Natural Earth 

 
 

 
Figure 2: Geospatial dataset examples – from left to right, soil type, elevation, land use and 

precipitation 

 
The data were stored in a Microsoft® SQL Server database, which could be queried in such a way as 
to provide a list of pipe joints with associated properties. The database was created using a series 
of Extract Transform Load (ETL) operations authored programmatically in Python™. Geospatial 
datasets required further processing using the Esri software ArcGIS™, in combination with the FME® 
data integration platform. 
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Figure 3 illustrates the structure of the final dataset. 
 

 
 

Figure 3: Illustration of final dataset 

 
Distributions of the condition metrics are shown in Figure 4. Note that anomaly density and 
corroded area are presented on a logarithmic scale for clarity. 
 

 
 

Figure 4: Distribution of condition metrics 

  

Pipe joint properties

3,443,896 
pipe joints

Joint ID
Construction 

year
Coating type

Precipitation 
(mm)

1 1982 Tape 790

2 1982 Tape 790

3,443,896 1965 Coal tar 822

Condition metrics

Anomaly
density

(m-2)

Corroded area 
(%)

Maximum 
depth
(mm)

n/a n/a n/a

1.1 0.28 1.7

n/a n/a n/a
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Machine Learning 

The purpose of machine learning is to embed trends within a predictive model that can be applied 
to new, unseen cases. In general this is achieved by defining a function, f, that maps a set of predictor 
variables, {xi}, to a target variable, y, i.e. 
 

y = f(x1, x2…xn) 
 
More detailed discussion on the key concepts of supervised machine learning is provided in previous 
work by the authors [1, 2]. 
 
In the present case, the predictor variables were properties of the pipe joints and environment (such 
as construction year, coating type, precipitation and elevation), while the target variables were the 
condition metrics (anomaly density, corroded area and maximum depth). The target was a set of 
three different models that could predict each of the condition metrics at a pipe joint level of 
resolution (Figure 5). 
 
 

 
 

Figure 5: Prediction of maximum corrosion depth (mm) at pipe joint level  

 
The selected model type was a deep neural network. A neural network is a directed graph 
constructed of nodes and arcs – as illustrated in Figure 6 – that describes a non-linear function 
between a set of inputs and one or more outputs. The function is governed by a set of network 
parameters (weights and biases) that are incrementally adjusted as the network “learns” from new 
data. 
 
A deep neural network is a specific type of neural network with more than one hidden layer (i.e. 
multiple layers between the input and output layers). This allows for modelling of very complex and 
highly non-linear functions. 
 
 

[construction year, coating type, precipitation, elevation…] joint i
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Figure 6: Deep neural network 

 
Each of the condition metrics (anomaly density, corroded area and maximum depth) was predicted 
with its own deep neural network. Prior to training, however, these target variables were 
engineered in order to maximize performance. This involved filtering and clustering of the dataset. 
Further details on these processes are provided in [1]. 
 
Development and training of the deep neural networks was achieved using the R l ibrary H2O [3], a 
framework for parallelizing machine learning and deep learning algorithms. The models were 
trained on a random 80% of the dataset and tested on the remaining 20%. 
 
 

 
Figure 7: Train test split 

 
Unity plots for the test dataset are shown in Figures 8-10 and the performance of the models (RMSE) 
is recorded in Table 3. Note that the models for anomaly density and corroded area were designed 
to predict the base 10 logarithm of the metric (rather than the metric itself). This was necessary due 
to the heavy positive skew in the distributions (see Figure 4). The result is that the RMSE values 
reflect orders of magnitude rather than absolute quantities. 
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Figure 8: Unity plot for anomaly density model 

 

 
 

Figure 9: Unity plot for corroded area model 
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Figure 10: Unity plot for maximum depth model 

 
 

Table 3: Model performances 

Condition metric RMSE for test dataset 

log10(anomaly density) 0.10 

log10(corroded area) 0.12 

Maximum depth 0.35 mm 

 

Discussion 

The performance of the deep neural network models on the unseen test dataset is extremely 
promising, with almost 100% of anomaly density and corroded area predictions lying within one 
order of magnitude of the true values, and ~98% of maximum depth predictions lying within ±1 mm. 
This slightly exceeds the performance of the models developed as part of the previous study, 
suggesting that the relative inhomogeneity of the European dataset is compensated by its size.  The 
results are expected to be favourable in comparison to the conventional modelling procedures used 
as part of External Corrosion Direct Assessment (ECDA) [4], and hence highly valuable for integrity 
management decision support. 
 
The presence of outliers should not be overlooked, however. In the case of corrosion prediction 
these are most likely caused by unique corrosion processes that the model has never seen, or by 
“hidden” variables that are not currently captured in the models. This serves to highlight the 
importance of continuous improvement. Virtual ILI models must continuously improve as new ILI 
datasets become available, and new predictor variables are collected. Over time, the anomalous 
predictions will be brought into line and performance will improve. 
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Further insight can be gained by considering variable importance values. These reflect the extent to 
which each predictor variable influences the prediction. In the previous study, the Gedeon 
method [5] for variable importance identified several key variables that were influential on the 
prediction of external corrosion condition metrics, including: 
 

 CP potential 

 Elevation 

 Mean annual precipitation 

 Construction year 

 Drainage 

 Rail intersection 

 External coating 

 Road intersection 
 
The importance of these variables can re-evaluated for the current set of models. Figure 11 shows 
a comparison of variable importance between the previous models (single operator/network in 
North America) and the current set of models (multiple operators/networks in Europe). 
 

 
Figure 11: Comparison of variable importance between previous and current models 

 
Roughly speaking, those variables that were previously identified as important were also identified 
as such in the present study, with the exception of CP potential and drainage which were not 
included in the new models. The ranking of these variables was also similar. Not only does this give 
confidence that the new models are behaving in a physically meaningful way, but it also confirms 
that external corrosion (at least in onshore pipelines) has universal and generalizable causes. 
 
Given that CP potential was identified as the most important variable in the previous study, it is 
natural to assume that the model performances would be reduced by its absence. The same is true 
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of drainage, although this is a less influential variable. Such a reduction in performance is not 
observed, however, and Figure 11 is useful in understanding why this may be the case. 
 
From the plot it is clear that the absence of two key variables has systematically increased the 
variable importance values for the remaining variables. This suggests that the new models have 
placed a greater reliance on these variables in order to extract useful information. This is particularly 
true of mean annual precipitation, which is the most important variable in the new models, and 
almost 40 percentage points higher in importance than it was previously. 
 
The most likely explanation is that precipitation (rainfall) is encoding information about the 
performance of the CP system. As identified in the previous study – and reproduced in Figure 12 – 
higher values of rainfall tend to correlate with more electronegative CP potentials. This results in 
the somewhat counterintuitive trend of higher rainfall leading to less corrosion. 
 

 
 

Figure 12: CP potential vs. mean annual precipitation 

 
This finding reflects one of the great advantages of machine learning methods, namely their ability 
to compensate for the absence of direct, causal trends and instead use indirect correlations to make 
predictions. While it is good engineering practice to use causal variables, an insistence on this 
approach can sacrifice predictive performance. It is the experience of the authors that oversight 
from a competent statistician and a subject matter expert is sufficient to ensure that correlations 
are meaningful. 

Conclusion 

This paper described the production of three machine learning models applied to external corrosion 
trained on a large, diverse population of in-line inspection (ILI) results from 755 pipelines and almost 
3.5 million pipe joints. External corrosion was measured using anomaly density, corroded area and 
maximum depth, resulting in three (deep learning) models. Comparisons were made with previous 
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work that used a smaller, but homogeneous dataset in order to determine whether the main 
predictors of external corrosion were consistent. 
 
The models’ performances at pipe joint resolution were quantified using an unseen test dataset. 
Root Mean Squared Error (RMSE) values of 0.10, 0.12, and 0.35 mm were achieved for anomaly 
density (log10 transformed), corroded area (log10 transformed) and maximum depth, respectively. 
In addition, almost all anomaly density and corroded are values were predicted within one order of 
magnitude of their true value, while ~98% of maximum depths were predicted within ± 1 mm of 
their true value. These metrics indicate a solid performance overall. 
 
Variable importance measures were similar when compared with the previous models,  suggesting 
that generalizable trends have been established. Despite missing some key variables seen in 
previous models (e.g. cathodic protection potential), there was no corresponding drop in 
performance. This is likely due to the much larger sample size, and the inherent ability of machine 
learning models to extract information from proxy variables – for example, the use of rainfall 
measurements to infer the efficacy of a cathodic protection system.  
 
Further data collection efforts are expected to reduce outliers and improve overall  performance, 
bringing the “Virtual ILI” concept – a health monitoring solution that can be deployed to almost any 
pipeline system in the world – closer to reality. 
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