

Mammographic density measurement methods: how well do they identify population breast screeners according to breast cancer risk?

<u>Velentzis LS^{1,2}</u>, Hughes S¹, Carle C¹, Luo Q¹, Evans J³, Mann GB^{4,5}, Nickson C^{1,2}

BreastScreen Australia Conference, Canberra, 15th March 2024

- 1. The Daffodil Centre, University of Sydney
- 2. Melbourne School of Population and Global Health, University of Melbourne
- 3. Monash BreastScreen, Monash Cancer Centre, Moorabbin Hospital, Melbourne
- 4. Breast Service, The Royal Women's and Royal Melbourne Hospital, Melbourne
- 5. Department of Surgery, University of Melbourne, Melbourne

Mammographic density (MD)

- Reflects variation in breast tissue: fat appears dark, connective and epithelial tissues appear light on mammograms
- Independent risk factor for breast cancer
- Reduces mammographic screening sensitivity
- Women with higher MD have:
 higher rates of interval cancers
 higher false positive rates

The D²ffodil Centre

How is MD assessed?

- There are various methods
- Subjective visual assessment, e.g. BI-RADS
- Semi-automated methods, e.g. Cumulus
- Automated methods, e.g. Volpara
- No recommendation for MD standardisation

Image: Mayo Foundation American College of Radiology's Breast Imaging Reporting and Data System

Is there a role for MD in risk-based screening?

- Current breast screening programs:
 based on target age
- A more risk-based approach could use MD to adjust screening protocols for women in particularly high-risk groups
 - →low-risk groups

The D^{*}ffodil Centre

 To evaluate the role of MD in risk-based screening, important to understand how different assessment methods compare in screening performance outcomes in population screening

Can MD assessment methods stratify women participating in breast cancer screening?

- Systematic review of studies
 - i) to determine how MD assessment methods perform in stratifying women according to screening outcomes in **different** screening settings
 - ii) to compare how different methods identify risk groups in the **same** screening population
- Part of the Roadmap to Optimising Screening in Australia (ROSA-Breast) project

Methods

Outcome	 Primary: pooled estimates from included studies of the interval invasive cancer rate difference between the two highest MD categories and the two lowest MD categories Secondary: trends in screening outcome rates according to increasing MD categories
	 Studies in populations screened with DM* reporting ≥ 1 outcomes for all categories of a method
Eligibility criteria	 Outcomes: interval cancer rates, screening program sensitivity (invasive cancers), false positive rates, screening program specificity, missed cancers (apparent on retrospective review but showing minimal signs)
	 Medline, Embase, Cochrane Database of Systematic Reviews, International Health Technology Assessment databases
Searches	• Jan 2008 – April 2023
	 Each outcome of interest was plotted by (i) MD categories reported by studies and (ii) MD category midpoint percentiles (standardise comparisons)
Data synthesis	 Trends in observed outcomes according to MD were calculated Pooled estimates (e.g. interval cancer rate difference) were generated using random-effects modelling

Results

<u>_</u>____

1980 records =>28 articles (26 cohorts) included

5 MD assessment methods:

BI-RADS (n=20), Volpara (n=6), texture resemblance (n=1),

STRATUS (n=1), DenSeeMammo (n=1)

8 studies reported interval cancer rates

-0-00--000--00-0--0-00-

Variation between studies

Setting: organised screening program vs screening in institutions/clinics, Screening intervals: biennial vs annual/biennial/triennial vs not reported Age ranges: commencing at 40/50/55y; exiting at 69/74/75y Screening round: repeat screeners (round 2+) vs first-time screeners

Results

 i) How MD measurement methods perform in stratifying women according to screening outcomes in different screening settings

The D⁵ffodil Centre

Results – interval invasive cancers

- Graphs
 A,B: BI-RADS studies
 C,D: Volpara studies
- Significant trend of increasing interval cancer rates with increasing MD category (p<0.001 for all studies)

Results – screening program sensitivity

- Graphs
 A,B: BI-RADS studies (n=3)
 C,D: Volpara studies (n=3)
- Significant trend of decreasing program sensitivity with increasing MD category (p<0.05 for all studies)

Results

ii) How do different MD measurement methodscompare in identifying risk groups in thesame screening settings

Results	Only two studies comparing different methods in the same setting Graph A: program sensitivity in US study (BI-RADS vs Volpara) Graph B: false positives in European study (BI-RADS vs mammographic texture resemblance
	Methods were consistent in their performance -> suggests driver is the setting

Conclusions

- Expected trends of poorer outcomes with increasing MD categories increasing interval cancer rates decreasing program sensitivity
- Most reported MD measurement methods: BI-RADS and Volpara, limited evidence on others
- No study reported clear discrimination of both high- and low-risk groups for interval cancers, for either BI-RADS or Volpara
- Meta-analysis of studies reporting invasive interval cancer rates by MD categories supports the use of BI-RADS and Volpara for directing efforts to reduce interval cancers within screening
- Local validation studies are required before any implementation

Thank you

