

Getting your Data Together Machine Learning for Pipeline Integrity

Hossein Khalilpasha (Advisian), Alhoush Elshahomi (Jemena), Tom Amrein (Jemena)

APGA Convention 2022, Brisbane, Australia

September 2022

advisian.com

Presentation Outline

- Background
- Machine Learning
- Northern Trunkline
- Discussion on Assessments and Outcome
- Conclusion

Risk

Probability

•

Impact

Probability of occurring

Consequences/Impact.

Risk is correlation of

Quantifying Risk

Modern Inspection techniques

provides a significant amount of

Reference Public image library of Nord Stream AG

Quality Data 📫

Accurate Probability

Challenge

RISK

Limited Resources

assessments are vendor driven,

New data isn't correlated effectively with past data

Consequence

quality data

The industry utilises less than 5% of the collected data

Modern Solution

In 20th Century, we invented machine to collect the data, in 21st Century we can train new generation to analyse the data

What is Machine Learning?

- Machine learning is a field of computer science that use statistical techniques to learn and predict 'events' based on pattern recognition
- It has been applied to:
 - Finance Industry
 - Health Industry
 - Supply Change

24/7 real time monitoring

We have dedicated teams working 24/7 looking for suspicious transactions and activity across your accounts. If we detect anything, we'll contact you so please ensure your contact details are up-to-date.

Where we suspect activity or transactions may be unauthorised, we may then contact you to confirm whether the activity and transactions were undertaken by you. We may contact you using the below methods:

- A phone call from one of our fraud analysts
- An automated voice-activated call from our telephone alert system, from 1300 754 566
- An automated SMS from our SMS service system (this will appear from + 61427741911, + 61447268622, or appear as CommBank)

The voice-activated telephone or SMS alert can contact you within seconds of any potential fraudulent activity on your account.

- If you receive a SMS from us asking you to confirm the transaction with a 'yes' or a 'no', simply respond:
- 'yes' if it was you that attempted the transaction, or
- 'no' if you did not attempt the transaction and one of our agents will give you a call to go through the next steps.
- If the original transaction was declined, you can re-attempt it after responding 'yes' and the transaction should be successful.

Reference : Artificial Intelligence vs. Machine Learning vs. Deep Learning , Artem Oppermann, Link

Application of Machine Learning to Pipelines – Cognitive Integrity Management

5

What does Machine do for us?

Align Multiple Inspections

• Align multiple inspection reports to calculate growth rate on anomaly level.

2007			201	12			2017	(20 M	22 Fl	
EMAT		loint Longth	MFL Joint No	A Jog Distance	loint Longth	loint I	MFL C al	loint Length	Cor	nbo	loint Length
Joint NO.	Log Distance	Joint Length	Joint No.	Log Distance	Joint Length	Joint	vo. Eog Distance	Joint Length	Joint No.	Log Distance	Joint Length
140	113.03	26.57	140	113.02	26.58	140	113.02	26.58	140	113.02	26.58
150	139.60	26.21	150	139.60	26.22	150	139.60	26.22	150	139.60	26.22
160	165.81	14.99	160	165.82	15.00	160	165.82	15.00	160	165.82	15.00
170	180.81	40.39	170	180.82	40.39	170	180.82	40.39	170	180.82	40.39
180	221.19	26.15	180	221.21	26.12	180	221.21	26.12	180	221.21	26.12
190	247.34	26.31	190	247.33	26.34	190	247.33	26.34	190	247.33	26.34
200	273.66	40.52	200	273.66	40.51	200	273.66	40.51	200	273.66	40.51
210	314.17	21.29	210	314.18	21.30	210	314.18	21.30	210	314.18	21.30
220	335.47	40.62	220	335.48	40.62	220	335.48	40.62	220	335.48	40.62
230	376.08	40.55	230	376.09	40.54	230	376.09	40.54	230	376.09	40.54
240	416.63	39.21	240	416.64	39.21	240	416.64	39.21	240	416.64	39.21
250	455.84	40.45	250	455.84	40.46	250	455.84	40.46	250	455.84	40.46
260	496.29	40.62	260	496.30	40.59	260	496.30	40.59	260	496.30	40.59
270	536.91	40.29	270	536.90	40.31	270	536.90	40.31	270	536.90	40.31
280	577.20	40.55	280	577.20	40.54	280	577.20	40.54	280	577.20	40.54
290	617.75	40.29	290	617.75	40.31	290	617.75	40.31	290	617.75	40.31
300	658.04	40.42	300	658.05	40.42	300	658.05	40.42	300	658.05	40.42
310	698.46	40.32	310	698.47	40.31	310	698.47	40.31	310	698.47	40.31
320	738.78	40.35	320	738.78	40.35	320	738.78	40.35	320	738.78	40.35
330	779.13	3.58	330	779.13	3.58	330	779.13	3.58	330	779.13	3.58
340	782.71	40.65	340	782.71	40.64	340	782.71	40.64	340	782.71	40.64
350	823.36	16.60	350	823.35	16.61	350	823.35	16.61	350	823.35	16.61
360	839.96	37.96	360	839.96	37.95	360	839.96	37.95	360	839.96	37.95
370	877.92	40.58	370	877.91	40.59	370	877.91	40.59	370	877.91	40.59
380	918.50	38.55	380	918.50	38.55	380	918.50	38.55	380	918.50	38.55
390	957.05	37.40	390	957.05	37.42	390	957.05	37.42	390	957.05	37.42
400	994.46	37.57	400	994.47	37.55	400	994.47	37.55	400	994.47	37.55
410	1,032.02	37.86	410	1,032.02	37.86	410	1,032.02	37.86	410	1,032.02	37.86
420	1,069.88	37.70	420	1,069.88	37.69	420	1,069.88	37.69	420	1,069.88	37.69
430	1,107.58	40.32	430	1,107.57	40.34	430	1,107.57	40.34	430	1,107.57	40.34
440	1,147.90	38.71	440	1,147.91	38.72	440	1,147.91	38.72	440	1,147.91	38.72

Automatic alignment of reverse pigged inspection

Assessment Name	ILI2010							
Master Joint ID	Joint No.	Log Dista	nce	Joint Length	Joint No.	Log Di	stance	Joint Length
500,005,700.00	68070	1,97	2.39	58.56	68070	389	849.05	58.62
500,005,800.00	68060	2,03	0.95	60.16	68060 3		790.43	58.61
500,005,900.00	68050	2,09	1.11	57.96	68050	389,	730.26	60.17
500,006,000.00	68040	2,14	9.07	59.73	68040	389,	672.31	57.96
500,006,100.00	68030	2,20	8.80	46.11	68030	389,	612.91	59.39
500,006,200.00	68020	2,25	4.92	59.42	68020	389,566.4		46.50
500,006,300.00	68010	2,31	4.34	57.44	68010	389,	506.86	59.55
500,006,400.00	68000	2,37	1.78	59.53	68000	389,	449.28	57.58
500,006,500.00	67990	2,43	1.31	59.48	67990	389,	389.71	59.57
500,006,600.00	67980	2,49	0.79	58.55	67980	389,	330.15	59.56
500,006,700.00	67970	2,54	9.34	57.66	67970	389,	271.60	58.55
500,006,800.00	67960	2,60	7.00	57.69	67960	389,	213.86	57.74
500 006 900 00	67950	2.66	4 6 9	57 50	67950	389	156 12	57 74

Identification of patterns in Spiral welded pipes

A case Study Northern Trunk Line

Pipeline Details

Pilot Study	'
Pipeline Length	171 Km
Pipeline Nominal Diameter	20"
Pipeline Segments	L3, L7 and L8
Pipeline Total Length (Km)	171
Pipeline ILI History	1998 ROSEN
	2008 ROSEN
	2018 BHGE

Summary of Anomalies in One Snapshot – Traditional

What Does it tell us?

- Statistical distribution of anomalies.
- Confusing
- Doesn't relate to physics
- Doesn't correlate the data and anomaly growth

Summary of Anomalies in One Snapshot – Using ML

what Does it tell u?

- Clear
- Data is presented with respect to Physical properties – Location, Position, mechanism/pattern
- Data are correlated and growth can be tracked.

How does it look like at anomaly level?

An anomaly with multiple ILIs

1m

Feature ID	Aligned to Feature	Max Depth %	U/S Weld Distance	Length	Width	Orientation	Assessment
Corrosion		15.0%	0.020	8.001	15.603	174	2018/11/14
Corrosion cluster		60.0%	0.102	32.931	24.293	163	2018/11/14
		11.0%	0.119	23.000	14.000	149	2008/11/29
Metal Object			8.365	79.809	178.532	194	2018/11/14

Corrosion cluster

• Dig Up confirmed prediction.

Getting your Data Together - Machine Learning for Pipeline Integrity

Results Comparison of Cost – Machine vs Traditional Method

Machine

Traditional Method

		3 years 5 years		5 years	7 years 10 Years		МОР	Anomaly Type	Quantity	Assumed %	Cost of Dig	Total Cost		
	CIM	Repaired/Inspected	CIM	Repaired/Inspected	CIM	Repaired/Inspected	CIM	Repaired/Inspected				requiring dig up	(\$300k/dig)	
MOP = 5MPa														
# of Digs	4	1	6	3	8	3	12	3		HSS	6	95%	\$ 1.71 M	\$ 2.41 M
Threat type	HSS Ext Int	4 0 0	HSS Ext Int	5 0 1	HSS Ext Int	5 2 1	HSS Ext Int	6 1 5	4.1	Ext Body	4	50%	\$ 0.6 M	
Total Dig Cost 300k per dig	900	(900	(1500	DK	2700K			Internal	16	2%	\$ 0.02 M	
MOP = 4.1 MPa	1									нсс	8	95%	\$ 2 28 M	
# of Digs	4	1	6	3	8	3	12	3		1100	0	55%	Ψ 2.20 ΙΨΙ	
Threat type	HSS Ext Int	4 0 0	HSS Ext Int	5 0 1	HSS Ext Int	5 2 1	HSS Ext Int	6 2 4	5.0	Ext Body	15	50%	\$ 2.25 M	\$ 4.71 M
Total Dig Cost 300k per dig	900	¢	900	¢	1500	DK	2700	DK		Internal	30	2%	\$ 0.18 M	

Results – 4.1MPa Growth vs 5MPa Growth

- Using machine, the estimated cost of maintenance in 5 years is reduced by a factor of 5.
- It reduced the ILI frequency.

Why a large difference? Data alignments allows pit to pit growth rate calc.

Pit to Pit Measurement

- The best method for determining corrosion rates is by directly comparing measured wall thickness changes after a known time interval.

Half Life calculation

- Measuring the corrosion rate of the material and manage future inspection based on the worst case half life established at each location.
- One Size fit all Flat/default rate
 - The least accurate method is by using a default rate

Most Accurate

Conclusion

- In 20th Century, we invented machine to collect the data, in 21st Century we certainly can train new generation to analyse the data.
- Using machine to analyse a large amount of data Jemena was able to significantly decrease
 - Assessment time by a factor of 10 (2 weeks vs 6 Months),
 - Cost by a factor of 5.

For more information please contact:

- Hossein Khalilpasha (Hossein.Khalilpasha@advisian.com)
- Alhoush Elshahomi (alhoush.elshahomi@jemena.com.au)

Acknowledgements

The Authors would like to acknowledge:

- Michael Peoples at Zinfra , Paul Grace and Kashif Rahman at Jemena for their support in this initiative
- One Bridge Solution for their support in providing CIM Software for the analysis. Special thanks to Tim Edwards and Wendy Aucoin.

