

Smart Sign Technology for Continuous Easement Interference Monitoring

Demi Vlass – SEA Gas Matthew Lama – Fleet Space Technologies Dr Johan Barthelemy – University of Wollongong

SEA Gas

- Own and operate 800km of high-pressure natural gas transmission pipeline system
- Provide 40-60% of South Australia's natural gas energy needs
- 1184 landholders on easement across SA & Vic
- Seeking to leverage operational technology to Work Smarter

Purpose

To enhance pipeline safety management and public safety

- Australian pipeline operating standards are world leading
- Need to maintain high safety standards to avoid potentially catastrophic consequences

[1] ARIA, 2021, accessed 29 September 2021, <<u>https://www.aria.developpement-durable.gouv.fr/fiche_detaillee/27681_en/?lang=en</u>>.

Key Public Safety Controls

External interference pose a significant risk to pipelines

- Gas transmission pipelines are buried to reduce possible interference
- Removal of this layer of protection increases risk
- Typical assurance activity is through patrolling the Right of Way, both air and ground, to monitor for threats
- Signage and pipeline awareness education as additional controls

Industry Need

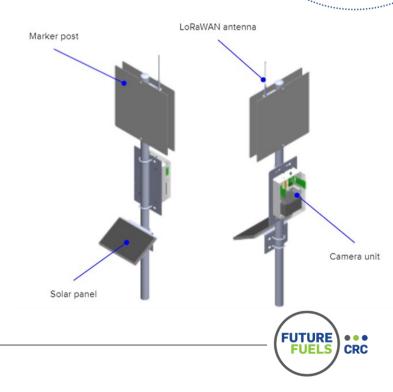
Current patrol methods have limitations

- Aerial and road patrols only detect threats for the duration they are in the vicinity of any section of pipeline
- Patrols are resource intensive
- As easement activity increases so do the number of possible threats

Alternate Technology Explored

- Satellite Photogrammetry
 - Issues with weather
 - High resolution is expensive
 - Economy of scale
- Drones
 - Need to be able to traverse 800kms in any weather
 - Not yet competitive at the scale required

Image from [2]



Proposed Solution

A continuous and intelligent monitoring device – making the sign "smart"

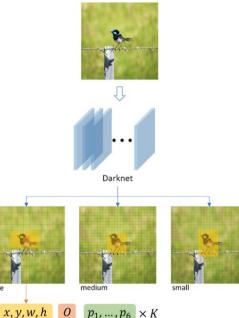
- Sensors on existing pipeline easement marker signs
- · Detect, analyse and identify threats using AI
- · Identified threats are communicated to pipeline operator

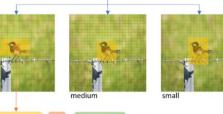
The Artificial Intelligence

Threat identification

Detecting Threats in Images

An object detection approach




You Only Look Once v4

An object detection approach

- 49 millions parameters to optimise
- Pre-trained on ImageNet (14 million • images)
- Able to detect objects on 3 different scales

large

SEA

box coordinates score

class probabilities #boxes predicted/cell

smart

suppression

Image from [3]

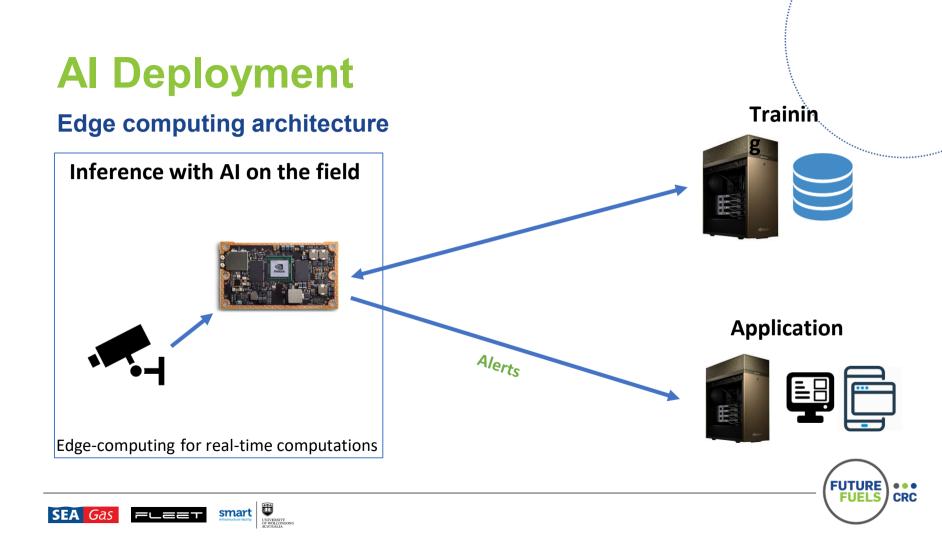
[3] Barthélemy, J., Verstaevel, N., Forehead, H., & Perez, P. (2019). Edge-computing video analytics for real-time traffic monitoring in a smart city. Sensors, 19(9), 2048. [4] Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.

Training the Al

Edge computing architecture

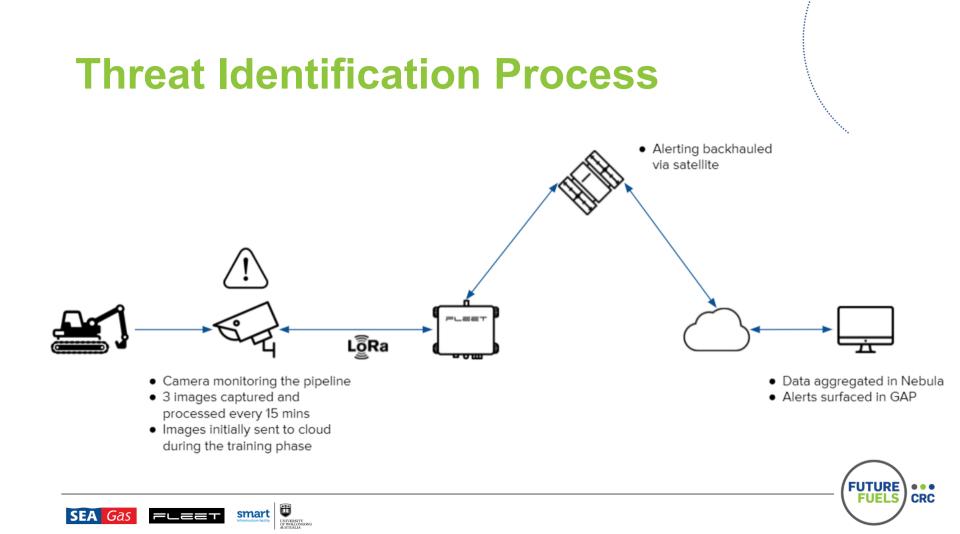
• Database: 10,000+ images of different threats, including

UNIVERSITY OF WOLLONG


Person	Cable plough	Tractor
Car	Truck	Clay delver
Excavator	Bobcat	Ditch witch
Boring rig	Auger	Post driver

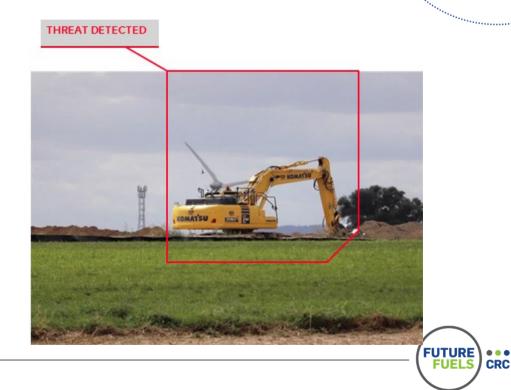
CRC

• <u>AI training and validation</u>: Accuracy on par with SOTA – 0.70 mAP



The Sensor

An intelligent edge-computing device



Threat Identified by the AI

- Detection •
- Confidence level calculation •

CRC

Alert Data Received in the Portal

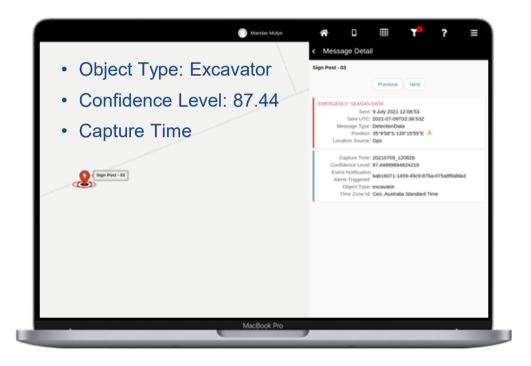
- Message aggregation
- Satellite backhaul

Alert Received in Management Platform

1.00

- Network management
- Downstream connectivity

1	DEVICES					
	•	-	NUCRETON	LATING	0407008	-
	a/WE/NOODEPULA	Protectives Rearie	Spars Ave, Brompton SA	-14.0000	CHI PAAAAAAAAA	
	6/95/40000129	Company Separa Reserve		14,002000000000	10.10.00	
	a.ret/woomercaw		Broghten Pace, Marton			
	8/95/00007080				18.4-010333333	
				14,857 20000000		
			1040 Flassie An, Now Debes 14 Mail			


*Alert delivered to operational platform/s, action to be taken as required

.....

Alert Data Visualised

Surfacing alerts for users

FUTURE FUELS

CRC

• Driving notifications

Staff Receive Alert

*Alert delivered to operational platform/s, action to be taken as required

.....

Challenges

X Pink tint and unstable brightness

X Before calibration

······

Field Test and Demo

Current Deployment

3 Portal and 48 sensors

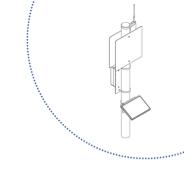
Demo

Conclusions and Future Work

Conclusions

- Al successfully trained
 - 10k images
 - mAP of 70%
 - 12 types of threats
- End-to-end solution currently being tested in the field
 - 48 devices and 3 portals deployed
 - Long-range data transmission

Next steps


Further training the AI

- Collecting more data
- Installing temporary devices

Sensors

- Review the unit design with a focus on:
 - Deployability
 - Power consumption
- Device evaluation
 - Testing in urbanised environment
 - Integration of improvements and learnings into the next generation of sensor

FUTURI

Enabling the decarbonisation of Australia's energy networks

Future Fuels CRC is supported through the Australian Government's Cooperative Research Centres Program. We gratefully acknowledge the cash and in-kind support from all our research, government and industry participants.

Australian Government

Department of Industry, Science, Energy and Resources AusIndustry Cooperative Research Centres Program