CONTAMINATED FINGERS: A POTENTIAL CAUSE OF
CHLAMYDIA TRACHOMATIS POSITIVE URINE SPECIMENS

Giffard PM\(^1,2\), Lilliebridge RA\(^1\), Wilson J\(^1\), Murray G\(^3,6\), Phillips S\(^3,6\), Tabrizi SN\(^3,4,5,6\), Garland SM\(^3,4,5,6\), Martin L\(^7\), Singh G\(^7,8,9,10\), Tong SYC\(^1,11\), Holt DC\(^1,2\), Andersson P\(^1\)

\(^1\)Menzies School of Health Research, Division of Global and Tropical Health, \(^2\)Charles Darwin University, School of Psychological and Clinical Sciences, \(^3\)The Royal Women’s Hospital, Department of Microbiology and Infectious Disease, \(^4\)University of Melbourne, Department of Obstetrics and Gynaecology, \(^5\)Royal Children’s Hospital, Department of Microbiology, \(^6\)Murdoch Childrens Research Institute, \(^7\)Royal Darwin Hospital, \(^8\)Sexual Assault Referral Centre, Northern Territory, \(^9\)Flinders University Northern Territory Medical Program, \(^10\)Menzies School of Health Research Child Health Division, \(^11\)Peter Doherty Institute for Infection and Immunity.

Background: The detection of a sexually transmitted infection (STI) agent in a urogenital tract (UGT) specimen from a young child is regarded as being indicative of sexual abuse. However, the probabilities of contamination events that could conceivably lead to STI positive specimens in the absence of sexual contact are unclear. The objective was to estimate the potential for fingers that have come in contact with Chlamydia trachomatis positive urine to detectably contaminate C. trachomatis negative urine.

Methods: The study design was based on self-experimentation. Dilutions of C. trachomatis elementary bodies (EBs) were prepared. Participants contacted an EB dilution then a urine surrogate specimen. The experiment was performed by three participants using three C. trachomatis isolates, of genotype E, F and B. Two surrogate urine contact methods were used to mimic contamination of a carer assisting with a child’s urine collection. All EB dilutions and urine surrogate specimens were subjected to C. trachomatis assay and quantification in a real-time PCR based diagnostic system.

Results: The amplimer crossing point (Cq) for EB dilutions was 10.0 ± 1.6 less than for corresponding finger contacted urine specimens, which corresponds to ~10 µl of EB suspension transferred. This was largely independent of participant identity, C. trachomatis strain or EB dilution. Hand decontamination led to large reductions in EBs transferred, but transfer remained consistently detectable. Recent Cq data from C. trachomatis positive clinical urine specimens were collated, and 20% clearly contained sufficient C. trachomatis to detectably contaminate another specimen by finger mediated transfer, as in this experiment.

Conclusion: This study directly demonstrated the potential for urine contaminated fingers to convert a C. trachomatis negative urine specimen to C. trachomatis positive as a result of contact. Accordingly, guidelines for first stream urine collection should incorporate precautions against contamination.

Disclosure of interest: This study was funded by NHMRC project grant 1060768.