Hepatitis C virus (HCV) testing, liver disease assessment and direct-acting antiviral (DAA) treatment uptake and outcomes in a service for the homeless in Sydney: The LiveRLife study

Bajis S¹, Cooper L², Smith J², Owen G², Chudleigh A², Hajarizadeh B¹, Martinello M¹, Yasmin Mowat¹, Marshall AD¹, Adey S³, Read P⁴, Gilliver R⁴, Treloar C⁵, Maher L¹, Grebely J¹, Dore GJ¹

¹The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia; ²Matthew Talbot Hostel, St Vincent de Paul Society NSW Support Services, Sydney, New South Wales, Australia; ³NSW Users and AIDS Association, Sydney, New South Wales, Australia; ⁴Kirketon Road Centre, Sydney, New South Wales, Australia; ⁵Centre for Social Research in Health, UNSW Sydney, New South Wales, Australia

Disclosures

• None to declare
Background

- People who are homeless have increased HCV risk, and poorer access to primary healthcare services.

- Estimates of HCV prevalence among people who are homeless range from 4% to 36%.¹

- Innovative, integrated models of care are needed to reach highly marginalised populations such as those who are homeless.

¹Beijer U et al., The Lancet Infectious Diseases, 2012

Aims

To determine the prevalence of HCV infection, liver fibrosis burden, and DAA treatment uptake and outcomes among people who are homeless in Sydney.
Study design and participants

- Observational cohort study
- Evaluation of an intervention integrating a liver health promotion campaign and non-invasive liver fibrosis assessment on linkage to care and HCV treatment uptake among people who are homeless
- Recruitment at a service for homeless people over 8 liver health campaign days (Feb & Dec 2016)
- ≥18 years, written informed consent

Study site

- Ozanam Learning centre
 - Community centre providing onsite education, living skills, recreational activities
 - No restrictions to access based on gender
- Mathew Talbot Hostel
 - 98 bed – men only
 - Services: meals, clothing, case management, housing support
 - Nurse-led primary health services with GP DAA prescriber
 - Health services provided to ~ 100 men/day
LiveRLife Study intervention

Study outcomes

- Detectable HCV RNA prevalence
- Advanced liver disease
- Clinical follow-up
- Treatment uptake
- SVR12
Definition of housing stability

- **Stable housing:**
 - Owned house/flat
 - Rented house/flat

- **Unstable housing:**
 - Street/homeless
 - Shelter/refuge/boarding house
 - Staying temporarily with friends
 - Staying with parents

Participant disposition

- Participants enrolled in LiverLife (n=226)
- Excluded or assessed as ineligible (n=3)

Invalid/missing HCV RNA test (n=3)

- Participants completed study assessments (n=222)

- Participants HCV RNA + (n=47)
- Participants HCV RNA - (n=175)

Lost-to-follow-ups (n=96)

- Attended follow-up visit (n=129)

- Treated (n=29)*
- SVR12 documented (n=53)

- 23%
- 62%

- Unexposed (n=6)

- 49%

- SVR12 uninformative (n=6)

*Five participants were commenced on treatment on enrolment

Two participants were commenced on treatment on enrolment
Participant characteristics

- **Enrolled**: n=202
- **Male**: 82%
- **Aboriginal/Torres Strait Islander identification**: 8%
- **Current OST**: 11%
- **High risk alcohol consumption**: 38%
- **Mean age**: 48
- **Unstable housing**: 58%
- **Ever been in prison**: 30%
- **Ever injected drugs**: 39%
- **Injected last month**: 63%

HCV RNA prevalence

- **23% HCV RNA+**

Liver disease burden

- **N=137**: F0/1
- **N=29**: F2
- **N=10**: F3
- **N=12**: F4

12 invalid results and 2 missing
Cascade of HCV care

HCV cascade of care among participants enrolled in the LiveRLife homelessness study

- Diagnosed with chronic HCV: 47
- Assessed for liver disease: 47
- Attended follow-up: 29
- Initiated treatment: 23
- Documented SVR12: 15

80% of participants dosed on-site achieved SVR12 (8/10)

Treatment uptake

Number initiating DAA treatment

- DAA listed on PBS
- Feb 16 Enrolment
- Now/Dec 16 Enrolment

4 Campaign days (Enrolment)
4 Campaign days (Enrolment)
Key HCV risk factors and prevalence

Among all participants (n=178)

<table>
<thead>
<tr>
<th>History of injecting</th>
<th>History of incarceration</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>73 (74%)</td>
<td>25 (26%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>27 (34%)</td>
<td>53 (66%)</td>
<td></td>
</tr>
</tbody>
</table>

Viraemic prevalence with either injecting or incarceration history:

37/105 = 35%

Among HCV RNA detectable participants (n=40)

<table>
<thead>
<tr>
<th>History of injecting</th>
<th>History of incarceration</th>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>3 (23%)</td>
<td>10 (77%)</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2 (7%)</td>
<td>25 (93%)</td>
<td></td>
</tr>
</tbody>
</table>

Viraemic prevalence with neither injecting or incarceration history:

3/73 = 4%

Injecting drug use among HCV RNA detectable

Among HCV RNA detectable (n=40):

- 85% History of injecting
- 70% History of recent injecting
Predictors of treatment uptake

<table>
<thead>
<tr>
<th></th>
<th>Treatment uptake, n (%)</th>
<th>Unadjusted model</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 – 35 years</td>
<td>1 (17%)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>36 – 50 years</td>
<td>14 (61%)</td>
<td>7.78 (0.78, 77.93)</td>
<td>0.081</td>
</tr>
<tr>
<td>≥51 years</td>
<td>4 (26%)</td>
<td>2.85 (0.24, 33.90)</td>
<td>0.406</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>18 (47%)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1 (50%)</td>
<td>1.11 (0.06, 19.10)</td>
<td>0.942</td>
</tr>
<tr>
<td>Housing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stable</td>
<td>6 (50%)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Unstable</td>
<td>13 (46%)</td>
<td>0.87 (0.22, 3.35)</td>
<td>0.836</td>
</tr>
<tr>
<td>History of injecting drug use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No history of injecting</td>
<td>3 (60%)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Yes, but not in previous month</td>
<td>4 (57%)</td>
<td>0.89 (0.09, 9.16)</td>
<td>0.921</td>
</tr>
<tr>
<td>Injecting in previous month</td>
<td>12 (43%)</td>
<td>0.50 (0.07, 3.48)</td>
<td>0.484</td>
</tr>
<tr>
<td>OST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>9 (45%)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Yes, previously received</td>
<td>2 (25%)</td>
<td>0.41 (0.07, 2.53)</td>
<td>0.335</td>
</tr>
<tr>
<td>Yes, currently receiving</td>
<td>8 (66%)</td>
<td>2.44 (0.55, 10.83)</td>
<td>0.239</td>
</tr>
<tr>
<td>FibroScan® Liver disease stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No/mild fibrosis (F0/F1)</td>
<td>14 (61%)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Moderate/severe fibrosis (F2/F3)</td>
<td>4 (33%)</td>
<td>0.32 (0.07, 1.39)</td>
<td>0.129</td>
</tr>
<tr>
<td>Cirrhosis (F4)</td>
<td>1 (32%)</td>
<td>0.32 (0.03, 4.10)</td>
<td>0.382</td>
</tr>
</tbody>
</table>

*Row percentages; †Two participants excluded due to invalid/missing fibroScan results

Discussion

- High HCV RNA prevalence among homelessness service population
- Key risk factors (history of injecting and incarceration) identified vast majority of HCV viraemic participants, suggesting good reporting of risk
- Encouraging study follow-up and DAA treatment uptake, but enhanced strategies required for further improvements
- Low treatment uptake among those with significant fibrosis of concern, as may indicate poor liver disease stage knowledge despite FibroScan
Study limitations

- Sample size
 - Limited power to evaluate predictors of DAA treatment uptake

- Selection bias
 - Sample may not be representative of the broader population of homeless

- Women under-represented
 - Matthew Talbot Hostel accommodation is male-only, although Ozanam not restrictive

- Uncontrolled study
 - Unable to evaluate specific impact of LiveRLife intervention on DAA treatment uptake

Conclusions/Implications

- Despite active screening and a committed clinical service with a GP DAA prescriber, linkage to care and treatment uptake was sub-optimal.

- A highly marginalised population requires innovative and holistic strategies to enhance linkage to care and treatment uptake.

- Risk-based HCV screening in homeless settings would provide a more targeted approach to HCV RNA testing and linkage to care

- An HCV ‘test and treat’ model of care, incorporating same-day DAA initiation should be evaluated
Acknowledgements

Kirby, UNSW Sydney
A/Prof. Jason Grebely
Prof. Gregory Dore
Prof. Lisa Maher
Dr. Tanya Applegate
Mr. Francois Lamoury
Ms. Pip Marks
Ms. Yasmin Mowat
Ms. Hannah Reid
Mr. David Silk
Ms. Mahshid Tamaddoni
Dr. Behzad Hajarizadeh
Dr. Marianne Martinello
Dr. Alison Marshall
Dr. Brendan Jacka
Dr. Evan Cunningham

Centre for Social Research in Health, UNSW Sydney
Prof. Carla Treloar

Kirketon Road Centre, Sydney
Dr. Phil Read
Ms. Rosemary Gilliver

NUAA
Ms. Sara Adey

Ozanam Learning Centre/
Mathew Talbot Hostel, Sydney
Mr. Greg Own
Mr. Alan Chudleigh
Dr. Lucy Cooper
Ms. Julie Smith
Ms. Arlene Everson