







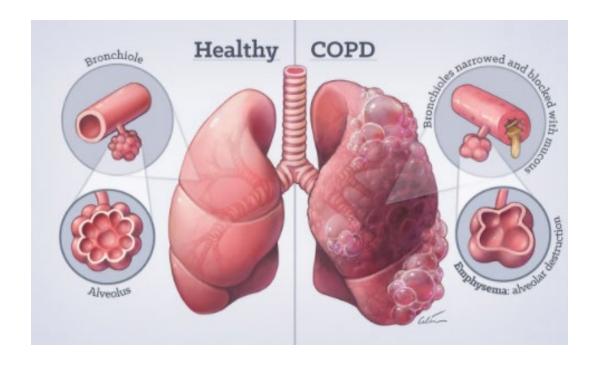
## Respiratory & Sleep Medicine Revision & Update

Dr Katrina Tonga
MBChB PhD FRACP
Respiratory & Sleep Medicine Physician
St Vincent's Hospital, Sydney NSW





#### **Overview**


- Chronic Obstructive Lung Disease
- Spirometry
- Lung function tests
- Obstructive Sleep Apnoea
- Cases
- Q & A





# **Chronic Obstructive Pulmonary Disease** (COPD)

- Persistent respiratory symptoms
- Airflow limitation due to
  - Airway abnormalities
  - Alveolar abnormalities
- Abnormalities caused by significant exposure to noxious particles or gases





# West of the second seco

#### **COPD:** epidemiology

- Major cause of chronic m
- 4<sup>th</sup> leading cause of
- ~50% of peop

nd mortality

þ

ptoms do not know the

years old has COPF

ase of avoidable hospit

n Indigenous Australians 2.5 times

3 Talia

ave COPD than

#### www.copdx.org.au

Toelle et al, Med J Aust 2013;198:144-148 Xuan et al, Respirology 2011;16:51

© 2020 Global Initiative for Chronic Obstructive Lung Disease, Inc.









- O Optimise function
- P Prevent deterioration
- D Develop a plan of care
  - Manage eXacerbations







## COPD-X Concise Guide



#### **Impact**

- Exacerbations
- Symptoms
- Quality of life



### Goals of Treatment

- Prevent exacerbations
- Reduce symptoms





#### Case 1



John 70 year-old male

- Retired businessman
- Ex-smoker, quit 30 years ago, 25 pack-year history
- 1 glass wine/day
- Past History:
  - Hypertension Ramipril
  - Reflux Nexium PRN
  - Osteoarthritis Paracetamol PRN



# Weight and the second of the s

#### Case 1



John 70 year-old male

- Wanting to get fit during COVID pandemic
- Dyspnoea on exertion
  - Struggles walking up incline on treadmill
  - Avoids stairs
- Lower respiratory tract infection most winter months – 'blue puffer' ± antibiotics
- Recent review by cardiologist 'all clear'
- Recent blood tests unremarkable



#### Case 1



John 70 year-old male

#### Examination:

- BMI 28 kg/m<sup>2</sup>
- Sp02 96% room air
- Heart rate 84/min
- BP 134/96
- No clubbing or lymphadenopathy
- Barrel chest
- Chest: clear
- CVS: quiet heart sounds





#### Case 1



John 70 year-old male

#### Does John have COPD?





# How do you confirm John has a diagnosis of COPD?

- Ask John to complete the COPD Assessment Test (CAT)
- Request a chest x-ray
- Trial Salbutamol 2 puffs when John feels breathless
- Request a CT chest
- Perform spirometry
- Trial Tiotropium 1puff daily for 4 weeks and review





### **COPD:** confirming the diagnosis

**Symptoms** 



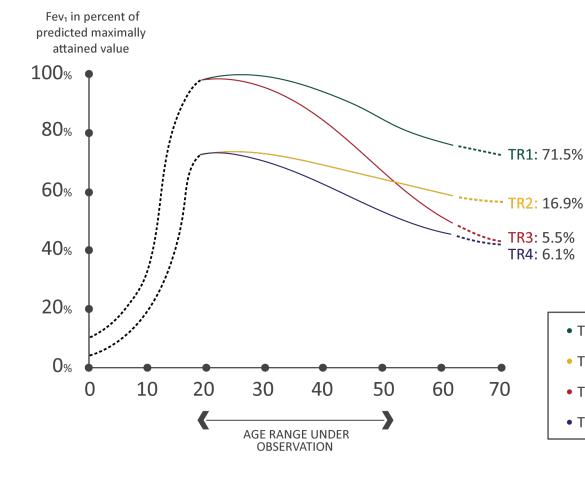
Risk factors









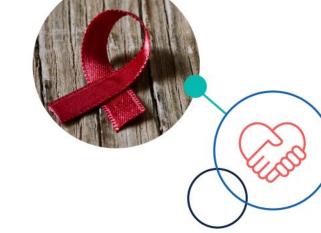







#### **FEV1** progression over time



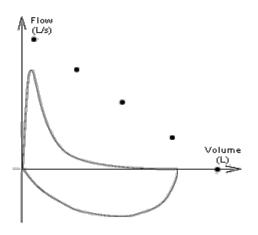



• TR1: Normal

NO COPD

- TR2: Small lungs but no COPD
- TR3: Normal initial FEV₁ with rapid decline leading to COPD
- TR4: Small lungs leading to COPD






### **COPD:** confirming the diagnosis

**Symptoms** 

Risk factors

Spirometry







#### **Spirometry**



- Measures the amount (volume) and speed (flow) of air that can be inhaled and exhaled
- Diagnosis
- Assessment of severity of airflow obstruction (Prognosis)
- Follow up assessment
  - Therapeutic decisions
  - Identification of decline





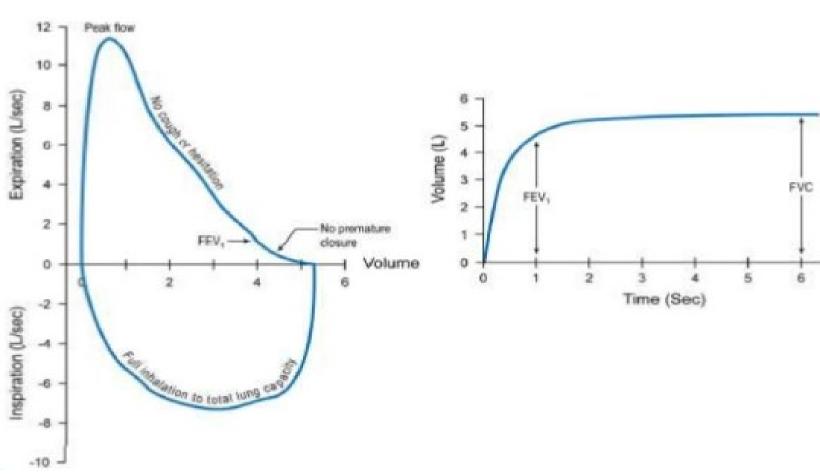


#### Spirometry: pre procedure

- Indication?
- Anthropometric measures
  - Height
  - (Weight)
  - Sex
  - Age
  - Ethnicity
  - Smoking history
- Reference equations

- Can the patient perform the test?
  - Ability to follow commands
  - Can the patient sit up?
  - Dentures
- Contraindications
  - Pneumothorax
  - Haemoptysis
  - Unstable cardiovascular status
  - Recent surgery or mouth/chest trauma
  - High blood pressure
  - Infection






#### Spirometry: quality control

- Spirometer needs calibration on a regular basis
- Variability in results
  - Tests are performed in triplicate
  - Between visits allow for <10% variability</li>
  - Can also be affected by
    - Patient effort
    - Different devices
- Expiratory curve needs to be displayed digitally or via hard copy to assist with detecting technical errors











#### Spirometry: results

- FEV<sub>1</sub>: forced expiratory volume in 1 second (litres)
  - Amount of air that can be 'forced out' in 1 second
  - How quickly the lungs can be emptied
- FVC: forced vital capacity (litres)
  - Maximum volume of air that can be 'forced out' after a full breath in
- FEV<sub>1</sub>/FVC ratio (%)
  - Determines presence of airflow limitation (obstruction)
- Normal values ~ >80% of predicted
- Lower limit of normal (LLN) Upper limit of normal (ULN)



### John's spirometry: what does this show?

|            | Pred  | Pred LL | Pred UL | Result       | % Pred | Z-Score |
|------------|-------|---------|---------|--------------|--------|---------|
| FEV1       | 2.31  | 1.71    | 2.90    | <u>0.79</u>  | 34     | -3.94   |
| FVC        | 2.97  | 2.19    | 3.78    | 2.56         | 86     | -0.86   |
| FEV1/FVC % | 78.49 | 65.64   | 89.52   | <u>30.94</u> | 39     | -4.62   |
| PEF        | 5.88  | 4.39    | 7.36    | <u>3.18</u>  | 54     | -2.99   |
| VC IN      | 2.73  | 2.04    | 3.42    | 2.11         | 77     | -1.48   |

FEV1 < 80% predicted

FEV1/FVC < 70%



# Lower Limit of Normal (LLN) and Z-Scores



|            | Pred  | Pred LL | Pred UL | Result       | % Pred | Z-Score |
|------------|-------|---------|---------|--------------|--------|---------|
| FEV1       | 2.31  | 1.71    | 2.90    | <u>0.79</u>  | 34     | -3.94   |
| FVC        | 2.97  | 2.19    | 3.78    | 2.56         | 86     | -0.86   |
| FEV1/FVC % | 78.49 | 65.64   | 89.52   | <u>30.94</u> | 39     | -4.62   |
| PEF        | 5.88  | 4.39    | 7.36    | <u>3.18</u>  | 54     | -2.99   |
| VC IN      | 2.73  | 2.04    | 3.42    | 2.11         | 77     | -1.48   |

Age Gender Height Ethnicity



#### John's post-bronchodilator spirometry

FEV1 < 80% predicted

|            | Pred  | Pred LL | Pred UL | Result       | % Pred | Z-Score | Post BD      | % Pred | % Change |
|------------|-------|---------|---------|--------------|--------|---------|--------------|--------|----------|
| FEV1       | 2.31  | 1.71    | 2.90    | <u>0.79</u>  | 34     | -3.94   | <u>0.82</u>  | 35     | 3        |
| FVC        | 2.97  | 2.19    | 3.78    | 2.56         | 86     | -0.86   | 2.64         | 89     | 3        |
| FEV1/FVC % | 78.49 | 65.64   | 89.52   | <u>30.94</u> | 39     | -4.62   | <u>30.97</u> | 39     | 0        |
| PEF        | 5.88  | 4.39    | 7.36    | <u>3.18</u>  | 54     | -2.99   | <u>3.30</u>  | 56     | 4        |
| VC IN      | 2.73  | 2.04    | 3.42    | 2.11         | 77     | -1.48   | 2.39         | 87     | 13       |



#### John's post-bronchodilator spirometry

Bronchodilator reversibility: change in FEV1 or FVC by ≥200 mL AND ≥12%

|          |   | Pred  | Pred LL | Pred UL | Result       | % Pred | Z-Score | Post BD     | % Pred | % Change |
|----------|---|-------|---------|---------|--------------|--------|---------|-------------|--------|----------|
| FEV1     |   | 2.31  | 1.71    | 2.90    | <u>0.79</u>  | 34     | -3.94   | 0.82        | 35     | 3        |
| FVC      |   | 2.97  | 2.19    | 3.78    | 2.56         | 86     | -0.86   | 2.64        | 89     | 3        |
| FEV1/FVC | % | 78.49 | 65.64   | 89.52   | <u>30.94</u> | 39     | -4.62   | 30.97       | 39     | 0        |
| PEF      |   | 5.88  | 4.39    | 7.36    | <u>3.18</u>  | 54     | -2.99   | <u>3.30</u> | 56     | 4        |
| VC IN    |   | 2.73  | 2.04    | 3.42    | 2.11         | 77     | -1.48   | 2.39        | 87     | 13       |

No bronchodilator reversibility

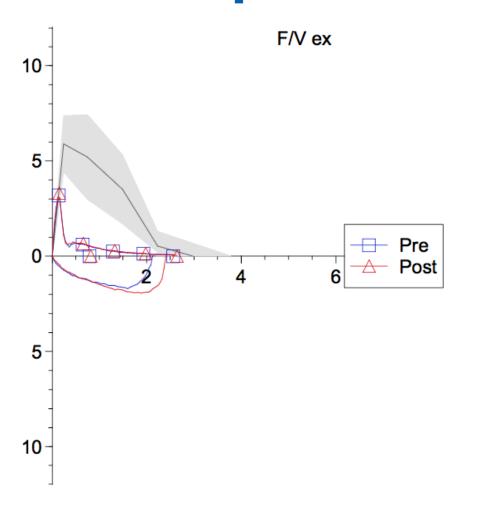




# Classification of airflow limitation severity (based on post-BD FEV1)

|        |             | FEV1/FVC < 70%             |
|--------|-------------|----------------------------|
| GOLD 1 | Mild        | FEV1 ≥ 80% predicted       |
| GOLD 2 | Moderate    | 50% ≤ FEV1 < 80% predicted |
| GOLD 3 | Severe      | 30% ≤ FEV1 < 50% predicted |
| GOLD 4 | Very Severe | FEV1 < 30% predicted       |




### John's post-bronchodilator spirometry

|            | Pred  | Pred LL | Pred UL | Result       | % Pred | Z-Score | Post BD      | % Pred | % Change |
|------------|-------|---------|---------|--------------|--------|---------|--------------|--------|----------|
| FEV1       | 2.31  | 1.71    | 2.90    | 0.79         | 34     | -3.94   | 0.82         | 35     | 3        |
| FVC        | 2.97  | 2.19    | 3.78    | 2.56         | 86     | -0.86   | 2.64         | 89     | 3        |
| FEV1/FVC % | 78.49 | 65.64   | 89.52   | <u>30.94</u> | 39     | -4.62   | <u>30.97</u> | 39     | 0        |
| PEF        | 5.88  | 4.39    | 7.36    | <u>3.18</u>  | 54     | -2.99   | <u>3.30</u>  | 56     | 4        |
| VC IN      | 2.73  | 2.04    | 3.42    | 2.11         | 77     | -1.48   | 2.39         | 87     | 13       |

Fixed or irreversible severe airflow limitation



#### John's flow volume loop







# West of the second seco

#### How would you treat John?

- 70 year old male with COPD
- Ex-smoker, 25 pack-year history
- Symptomatic:
  - Dysnoea on exertion
  - Recurrent lower respiratory tract infection
- Co-morbidities: hypertension, reflux, osteoarthritis
- Spirometry: severe fixed airflow limitation







#### **Impact**

- Exacerbations
- Symptoms
- Quality of life

## Goals of Treatment

- Prevent exacerbations
- Reduce symptoms



# Ph

#### Pharmacological therapy: stable COPD

- Inhaled medications
  - Correct medication
  - Technique
  - Adherence
- Tailor medications based on symptoms, exacerbations, treatment response and side effects
  - Patient's ability to use/take medication
- Inhaled corticosteroids
  - Increased risk of pneumonia





|                                                          | <b>*</b>                                                                                                                     |                                                                                                                                                                                             |                                                                                                                                                         |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                          |                                                                                                                              | Increasing COPD severity                                                                                                                                                                    |                                                                                                                                                         |
|                                                          | MILD                                                                                                                         | MODERATE                                                                                                                                                                                    | SEVERE                                                                                                                                                  |
| Typical symptoms                                         | few symptoms     breathless on moderate exertion     little or no effect on daily activities     cough and sputum production | breathless walking on level ground     increasing limitation of daily     activities     recurrent chest infections     exacerbations requiring oral     corticosteroids and/or antibiotics | breathless on minimal exertion     daily activities severely curtailed     exacerbations of increasing frequency and severity                           |
| Typical lung function                                    | FEV₁ = 60-80% predicted                                                                                                      | FEV, = 40-59% predicted                                                                                                                                                                     | FEV, < 40% predicted                                                                                                                                    |
| CONFIRM diagnosis. Co                                    |                                                                                                                              | imitation (FEV, /FVC <0.70) using <b>spirome</b>                                                                                                                                            | try. Any pattern of cough with or without                                                                                                               |
|                                                          | EVENT deterioration. <u>D</u> EVELOP                                                                                         | a plan of care.                                                                                                                                                                             |                                                                                                                                                         |
| Non-pharmacological interventions                        |                                                                                                                              | xposure to risk factors including tobaccos<br>uenza vaccine and pneumococcal vaccine                                                                                                        |                                                                                                                                                         |
|                                                          |                                                                                                                              | regular exercise and physical activity, rev<br>PD action plan (and initiate regular review                                                                                                  | iew nutrition, provide education, develop GP<br>)                                                                                                       |
|                                                          | OPTIMISE TREATMENT OF CO-losteoporosis                                                                                       | MORBIDITIES especially cardiovascular d                                                                                                                                                     | isease, anxiety, depression, lung cancer and                                                                                                            |
|                                                          | REFER symptomatic patients to p                                                                                              | pulmonary rehabilitation                                                                                                                                                                    |                                                                                                                                                         |
|                                                          |                                                                                                                              | INITIATE advanced care planning                                                                                                                                                             |                                                                                                                                                         |
|                                                          |                                                                                                                              |                                                                                                                                                                                             | MANAGE advanced lung disease with domiciliary oxygen therapy, long-term non-invasive ventilation, surgery and bronchoscopic interventions, if indicated |
| Pharmacological<br>interventions<br>(inhaled medicines)" | START with short-acting relie<br>SABA (short-acting beta <sub>2</sub> -agonis                                                | vers: (used as needed):<br>t) OR SAMA (short-acting muscarinic anta                                                                                                                         | igonist)                                                                                                                                                |
|                                                          |                                                                                                                              | tors:<br>htagonist) OR LABA (long-acting beta, -a;<br>AMA/LABA depending on symptomatic re                                                                                                  |                                                                                                                                                         |
|                                                          |                                                                                                                              | <u>CONSIDER</u> adding ICS (inhaled cortice<br>Single inhaler triple therapy (ICS/LABA                                                                                                      |                                                                                                                                                         |
|                                                          |                                                                                                                              | *in patients with 21 severe excertation requiring hospitalisatic<br>significant symptoms despite LAMA/LABA or ICS/LABA therapy                                                              | on or 22 moderate exacerbations in the previous 12 months, AND<br>; OR in patients stabilised on a combination of LAMA, LABA and ICS.                   |
|                                                          | Assess and optimise inhaler of                                                                                               | levice technique at each visit. Minim                                                                                                                                                       | ise inhaler device polypharmacy                                                                                                                         |









#### Pharmacological interventions (inhaled medicines)\*\*

**START** with short-acting relievers: (used as needed):

**SABA** (short-acting beta<sub>2</sub>-agonist) OR **SAMA** (short-acting muscarinic antagonist)

#### **ADD** long-acting bronchodilators:

LAMA (long-acting muscarinic antagonist) OR LABA (long-acting beta<sub>2</sub>-agonist)
Consider need for combination LAMA/LABA depending on symptomatic response

CONSIDER adding ICS (inhaled corticosteroids):
Single inhaler triple therapy (ICS/LABA/LAMA) may be suitable\*

\*in patients with ≥1 severe exacerbation requiring hospitalisation or ≥2 moderate exacerbations in the previous 12 months, AND significant symptoms despite LAMA/LABA or ICS/LABA therapy; OR in patients stabilised on a combination of LAMA, LABA and ICS.

Assess and optimise inhaler device technique at each visit. Minimise inhaler device polypharmacy





#### **FACTORS TO CONSIDER WHEN INITIATING ICS TREATMENT**

Factors to consider when initiating ICS treatment in combination with one or two long-acting bronchodilators (note the scenario is different when considering ICS withdrawal):

| · STRONG SUPPORT ·                                                                                                                                 | · CONSIDER USE ·                                                                                          | · AGAINST USE ·                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>History of hospitalization(s)         for exacerbations of COPD#</li> <li>≥ 2 moderate exacerbations         of COPD per year#</li> </ul> | <ul> <li>1 moderate exacerbation of COPD per year#</li> <li>Blood eosinophils 100-300 cells/μL</li> </ul> | <ul> <li>Repeated pneumonia events</li> <li>Blood eosinophils &lt;100 cells/μL</li> <li>History of mycobacterial</li> </ul> |
| <ul> <li>Blood eosinophils &gt;300 cells/μL</li> <li>History of, or concomitant, asthma</li> </ul>                                                 |                                                                                                           | infection                                                                                                                   |

#despite appropriate long-acting bronchodilator maintenance therapy (see Table 3.4 and Figure 4.3 for recommendations);

Reproduced with permission of the © ERS 2019: *European Respiratory Journal 52 (6) 1801219; DOI: 10.1183/13993003.01219-2018 Published 13 December 2018* 

FIGURE 3.1

<sup>\*</sup>note that blood eosinophils should be seen as a continuum; quoted values represent approximate cut-points; eosinophil counts are likely to fluctuate.





- Short acting bronchodilators
- Oral corticosteroids
  - Short course
- Antibiotics
  - If symptoms and signs to suggest infection





### Surgery and bronchoscopic therapy

- Surgery
  - Lung Volume Reduction Surgery
  - Lung Transplantation
- Bronchoscopic procedures
  - Endobronchial Valve Insertion
  - Bronchial Rheoplasty



# Records to the same of the sam

#### Case 1



John 70 year-old male

- Tiotropium Respimat 2.5 mcg 2 puffs daily (LAMA)
  - Device too compliated
  - Switched to Umeclinidium 62.5 mcg 1 puff daily (LAMA)
- 2 months later:
  - Spirometry unchanged
  - Still symptomatic, 1 mild exacerbation requiring short course of oral corticosteroid
  - Good inhaler technique and adherence
  - Uptitrated to Umeclinidium/Vilanterol 62.5/25 mcg 1 puff daily (LAMA/LABA)
  - Pulmonary rehabilitation
- Another 3 months later:
  - Mild improvement in spirometry
  - Symptoms improved, no exacerbations
  - Continued on LAMA/LABA
  - Maintenance exercise program
  - For review in 3 months vaccinations









### Lung function tests: when do you request which test?

you

- Diagnosis
- Assessment of the degree of the disease/disability
- To monitor progress
- To monitor effect of treatment
- Many tests available
- Assess various components of lung function




### **Lung function tests**

- Ventilation
  - Spirometry
  - Flow Volume Loop
- Lung volumes
  - Body Plethysmography
- Gas exchange
  - Diffusing capacity (transfer factor)



- Airway Inflammation
  - Exhaled nitric oxide (FeN0)
- Airway hyper-responsiveness
  - Bronchoprovocation challenge test
- Respiratory Muscle Strength
  - Maximal Inspiratory/Expiratory Pressure (MIPS, MEPS)
  - Sniff Nasal Inspiratory Pressure (SNIP)
- Exercise capacity
  - 6-minute walk test
  - Cardiopulmonary Exercise Test (CPET)







Mary 57 year-old female

- Teacher
- Social smoker, less than 5 pack-years
- 3 glasses wine/week
- Past History:
  - Hayfever worse in Spring







Mary 57 year-old female

- Persistent cough 2 months, post viral infection
- Occasional wheeze
- Dyspnoea during cardio workout at gym
- Intermittent hoarse voice
- Examination:
  - Sp02 98% on room air
  - HR 78/min
  - BP 108/72
  - Chest: clear, no wheeze



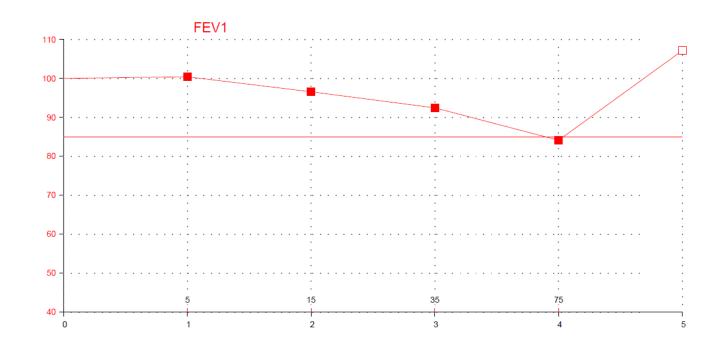




|               | Pred. | LLN   | Baseline<br>Meas. | % Pred. | Post<br>Meas. | % Pred.     | Change<br>% |
|---------------|-------|-------|-------------------|---------|---------------|-------------|-------------|
| Spirometry    |       |       |                   |         | Vent          | olin 400.00 | ) mcg       |
| FEV1(L)       | 2.77  | 2.11  | 2.12              | 77      | 2.21          | 80          | 4           |
| FVC(L)        | 3.51  | 2.69  | 2.98              | 85      | 2.90          | 82          | -3          |
| FEV1/FVC(%)   | 79.41 | 67.68 | 71.34             | 90      | 76.36         | 96          | 7           |
| PEF(L/S)      | 6.42  | 4.94  | 5.43              | 85      | 7.13          | 111         | 31          |
| FEF25-75(L/S) | 2.43  | 1.29  | 1.42              | 58      | 1.77          | 73          | 25          |
| FIVC(L)       | 0.00  |       | 2.41              |         | 2.67          |             | 11          |

Within normal limits, no bronchodilator reversibility




### What test would you consider next to confirm Mary's diagnosis?

- Skin prick test
- Chest x-ray
- Bronchoscopy
- Bronchoprovocation challenge test
- CT chest

#### **Bronchial Provocation Test (Mannitol)**

|          | Level 1     |        | Level 2 | Level 3 | Level 4 | Level 5 | Level 6 | Level 7 | Level 8 | Level 9 | Post    |
|----------|-------------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Dose     | 0.0 mg      |        | 5 mg    | 15 mg   | 35 mg   | 75 mg   | 155 mg  | 315 mg  | 475 mg  | 635 mg  | 400 mcg |
|          | Meas.       | % Pred |         |         |         |         |         |         |         |         |         |
| FEV1(L)  | 2.20        |        | 2.29    | 2.12    | 2.03    | 1.85    |         |         |         |         | 2.35    |
| FEV1 %   | ∟<br>change |        | 0.4     | -3.4    | -7.6    | -15.9   |         |         |         |         | 7.1     |
| from Bas | seline      |        |         |         |         |         |         |         |         |         |         |





#### **Technician comments:**

Predicted Equations: GLI (Spirometry).

Post test was performed after 400mcg of Salbutamol via spacer.

### Positive mannitol challenge test

Airway hyperresponsiveness



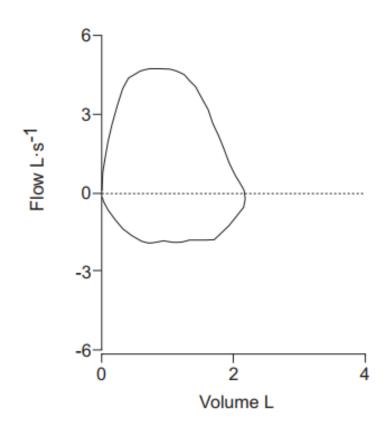


### **Bronchoprovocation challenge test**

- Assesses for airway hyper-responsiveness and/or response to therapy
- Indirect or direct challenge tests
  - Methacholine, histamine
  - Mannitol, adenosine, eucapnic hyperventilation
- If diagnosis of asthma is in question
  - Exercise-induced bronchoconstriction
- 'Positive' test agent provokes a significant drop in FEV1





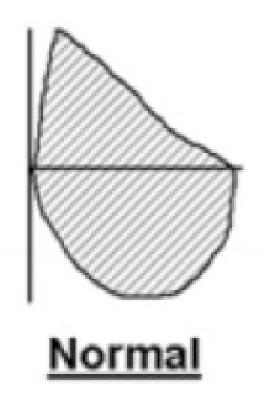

Mary 57 year-old female

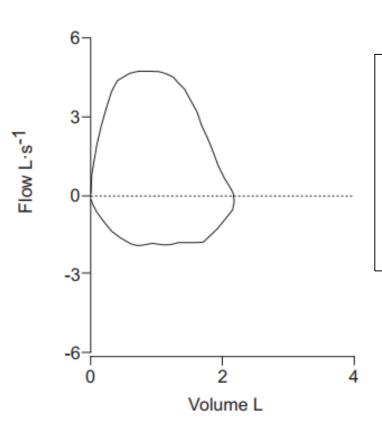
- Low dose inhaled corticosteroid 2 months
- Ongoing intermittent cough
- Exercising at usual capacity
- No wheeze, rhinitis or reflux
- Inhaler technique checked
- Reported strict adherence
- ICS dose increased for review in 2 months
- Spirometry is unchanged





### Flow-volume loop





What is Mary's diagnosis?

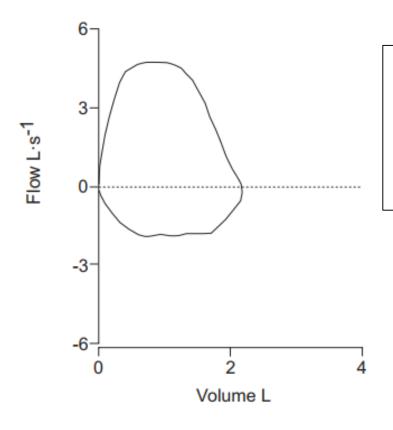




### Flow-volume loop






### Flattened inspiratory loop

Variable extra thoracic obstruction





### Flow-volume loop



### Mary's diagnoses:

- 1. Asthma
- 2. Vocal cord dysfunction





- Retired plumber
- Lifelong non-smoker
- 5 beers/week
- No significant past history
- No regular medications

Paul 78-year-old male









Paul 78-year-old male

- Dyspnoea on exertion 3 years, gradually worsening
- Intermittent cough
- Examination:
  - Sp02 96% on room air
  - HR 78/min
  - BP 108/72
  - Clubbed
  - Chest: fine inspiratory bibasal crackles



## S/ Dradi

Post-Dilator

#### **Spirometry**

|                  | Pre-Dilator | % Predicted |
|------------------|-------------|-------------|
| FEV1 (mls BTPS)  | 2070        | 67          |
| FVC (mls BTPS)   | 2460        | 61          |
| FEV1/VC (%)      | 84          | ш ,         |
| PEFR (L/sec)     | 7.18        | 90          |
| FEF25-75 (L/sec) | 2.39        | 76          |

% Predicted





| Spi | rom | etry |
|-----|-----|------|
|     |     |      |

|                  | Pre-Dilator | % Predicted | Post-Dilator | % Predicted |
|------------------|-------------|-------------|--------------|-------------|
| FEV1 (mls BTPS)  | 2070        | 67          |              |             |
| FVC (mls BTPS)   | 2460        | 61          |              |             |
| FEV1/VC (%)      | 84          |             |              |             |
| PEFR (L/sec)     | 7.18        | 90          |              |             |
| FEF25-75 (L/sec) | 2.39        | 76          |              |             |
| ,                |             |             |              |             |

| Single Breath Diffusion | Capacity for Carbon Monoxide Miller (Am Rev Resp Dis, 1983) | į |
|-------------------------|-------------------------------------------------------------|---|
|                         |                                                             |   |

|                          | Observed | % Predicted |
|--------------------------|----------|-------------|
| DLCO (ml/min/mmHg)*      | 12.9     | 49          |
| KCO (ml/min/mmHg/L BTPS) | 3.43     | 86          |
| Alveolar Volume (L BTPS) | 3.76     |             |
| * Corrected for Hb       |          |             |

| Lung Volumes mL BTPS (Body Plethysmography) |
|---------------------------------------------|
|---------------------------------------------|

|                              | Predicted | Observed | % Predicted |
|------------------------------|-----------|----------|-------------|
| Total Lung Capacity          | 6982      | 4100     | 59          |
| Vital Capacity (Slow)        | 4388      | 2500°    | 57          |
| Inspiratory Capacity         | 3333      | 2010     | 60          |
| Functional Residual Capacity | 3649      | 2090     | 57          |
| Expiratory Reserve Volume    | 1055      | 490      | 46          |
| Residual Volume              | 2594      | 1600     | 62          |



### Moderate restrictive ventilatory defect Reduced gas transfer



#### **Spirometry**

|                  | Pre-Dilator | % Predicted | Post-Dilator | % Predicted |
|------------------|-------------|-------------|--------------|-------------|
| FEV1 (mls BTPS)  | 2070        | 67          |              |             |
| FVC (mls BTPS)   | 2460        | 61          |              |             |
| FEV1/VC (%)      | 84          |             |              |             |
| PEFR (L/sec)     | 7.18        | 90          |              |             |
| FEF25-75 (L/sec) | 2.39        | 76          |              |             |

#### Single Breath Diffusion Capacity for Carbon Monoxide Miller (Am Rev Resp Dis, 1983)

|                          | Observed | % Predicted |
|--------------------------|----------|-------------|
| DLCO (ml/min/mmHg)*      | 12.9     | 49          |
| KCO (ml/min/mmHg/L BTPS) | 3.43     | 86          |
| Alveolar Volume (L BTPS) | 3.76     |             |
| *** ' ' ' '              |          |             |

<sup>\*</sup> Corrected for Hb

#### Lung Volumes mL BTPS (Body Plethysmography)

|                              | Predicted | Observed | % Predicted |
|------------------------------|-----------|----------|-------------|
| Total Lung Capacity          | 6982      | 4100     | 59          |
| Vital Capacity (Slow)        | 4388      | 2500     | 57          |
| Inspiratory Capacity         | 3333      | 2010     | 60          |
| Functional Residual Capacity | 3649      | 2090     | 57          |
| Expiratory Reserve Volume    | 1055      | 490      | 46          |
| Residual Volume              | 2594      | 1600     | 62          |



### **Usual Interstitial Pneumonia Idiopathic Pulmonary Fibrosis**

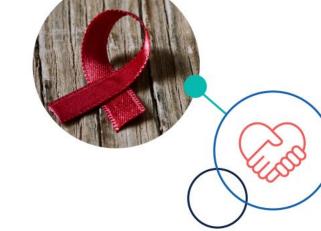






### Lung function tests: when do you request which test?

- Diagnosis
- Assessment of the degree of the disease/disability
- To monitor progress
- To monitor effect of treatment
- Spirometry
- Flow Volume Loops
- Lung Volumes
- DLCO
- Consider additional tests if above tests are unremarkable





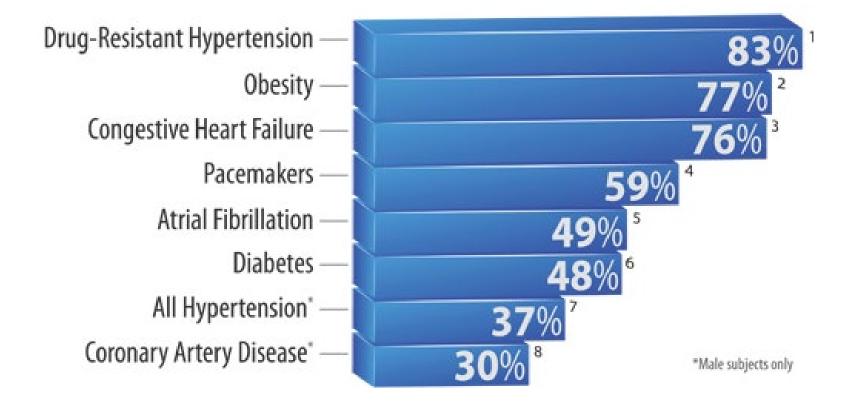

GIBBLEGUTS.COM

By Dan Gibson

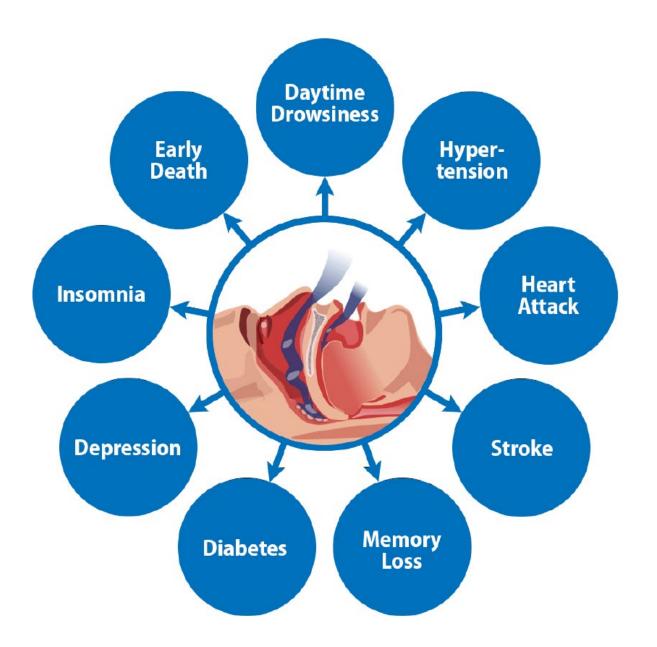









### **Obstructive Sleep Apnoea**


- Sleep disorder characterized by obstructive aponeas, hypoponoea and/or respiratory related effort related arousals
- Caused by repetitive complete or partial collapse of the upper airway during sleep
- Risk factors:
  - Male
  - Older age
  - Obesity
  - Craniofacial and upper airway abnormalities
  - Family history



### Prevalence of Sleep Apnoea Comorbidities













- Social smoker

Truck driver

- Alcohol 5 drinks/week
- Tonsillectomy as a child
- No regular medications

Tom 38-year-old male









Tom 38-year-old male

- Motor vehicle accident while driving truck
- Reported coughing fit → loss of consciousness
- No significant injuries
- Admitted for neurology assessment
  - EEG, CT brain unremarkable
  - Cardiac assessment unremarkable
- Discharged home for outpatient sleep study
- To notify driver's license authority prior to returning to work





Tom 38-year-old male

- No history of snoring or witnessed apnoeas
- Sleeps 7 hours/night
- Wakes refreshed
- No morning headache
- No daytime tiredness
- Denies sleepiness while driving
- Examination:
  - BMI 39.6 kg/m2
  - Sp02 98% room air
  - Normal nasal flow
  - Normal skeletal facial pattern
  - Oropharyngeal calibre normal
  - Normal CVS and Resp exam



### **Epworth Sleepiness Scale**

|                                                               | No<br>chance | Slight<br>chance | Moderate<br>chance | High<br>chance |
|---------------------------------------------------------------|--------------|------------------|--------------------|----------------|
| Sitting and reading                                           | 0            | 1                | 2                  | 3              |
| Watching TV                                                   | 0            | 1                | 2                  | 3              |
| Sitting inactive in a public place (e.g. meeting, theatre)    | 0            | 1                | 2                  | 3              |
| As a passenger in a car for an hour without a break           | 0            | 1                | 2                  | 3              |
| Lying down to rest in the afternoon when circumstances permit | 0            | 1                | 2                  | 3              |
| Sitting and talking to someone                                | 0            | 1                | 2                  | 3              |
| Sitting quietly after lunch without alcohol                   | 0            | 1                | 2                  | 3              |
| In a car, while stopped for a few minutes in the traffic      | 0            | 1                | 2                  | 3              |



### **Sleep Studies**

- Sleep Study Channels
  - EEG
  - EOG
  - Submental EMG
  - ECG
  - Leg movements
  - Oxygen saturation
  - Sound
  - Thoraco-abdominal movements
  - Airflow
  - Body position



- Types of Sleep Studies
  - Attended
    - Level 1 Laboratory Sleep Study
  - Unattended
    - Level 2 At least 7 channels
    - Level 3 At least 4 channels
    - Level 4 1 or 2 channels



### **Sleep Study Referral**





Traditional Pathway

Suspected OSA

GP referral to Specialist

Sleep Study

Treatment

### Alternate Pathway

Suspected OSA

GP referral for Sleep Study

Sleep Study report sent to GP

Referral to Sleep Physician if required



### Direct referral for sleep study by GP



STOP-BANG score ≥ 4; or

OSA50 score ≥ 5; or

High risk on Berlin questionnaire



ESS ≥ 8



### **OSA 50**



|                                                               | Please<br>circle if<br>"yes" |
|---------------------------------------------------------------|------------------------------|
| Waist circumference >102 cm for males or >88 cm for females   | 3                            |
| Has your snoring ever bothered other people?                  | 3                            |
| Has anyone noticed that you stop breathing during your sleep? | 2                            |
| Are you aged 50 years or over?                                | 2                            |
| TOTAL SCORE                                                   |                              |



### Laboratory vs home sleep study

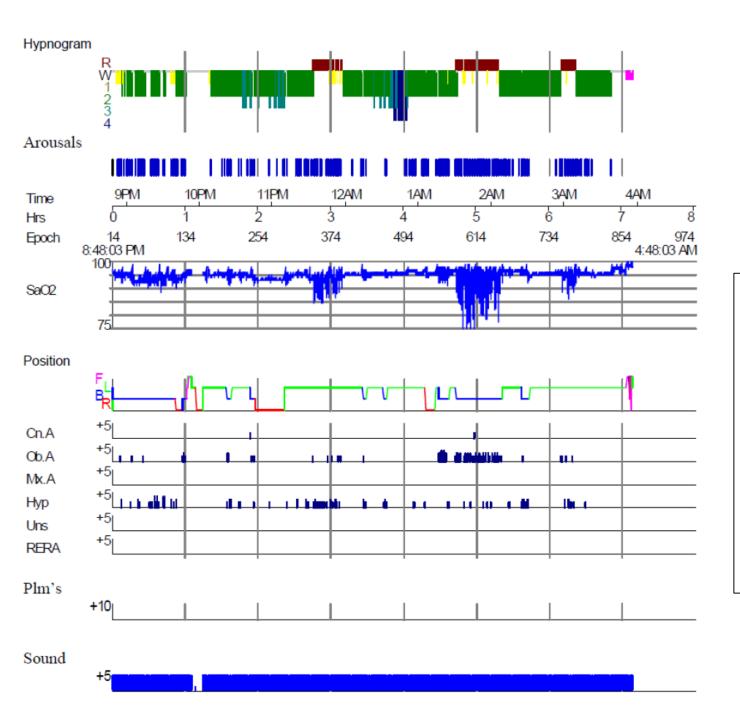
- Home Sleep Study
  - Convenient
  - Cheaper
  - Validated
  - Unattended

Patient selection is important




Relatively high clinical (pre-test) probability of OSA




No significant co-morbidities (e.g., cardiac or respiratory diseases)



### Unsuitable for home sleep study



- Suspected complicated sleep-disordered breathing
- Medical co-morbidities
- More than one type of sleep disorder
- Difficulties in understanding or complying with instructions
- Sleep studies undertaken for medico-legal purposes





### **Severe OSA**

Respiratory Disturbance Index (RDI) 31.3/hour Min Sp02 64% Arousal Index 40.6/hour







Tom 38-year-old male

- Started on CPAP
- Advised not to drive until further assessment
- Referred for Maintenance of Wakefulness Test
  - Urine drug screen negative
  - Did not fall asleep in all 4 trials

|                    | SLEEP LATENCY | STAGES OF SLEEP ACHIEVED |
|--------------------|---------------|--------------------------|
| TEST 1             | 40 mins       | did not sleep            |
| TEST 2             | 40 mins       | did not sleep            |
| TEST 3             | 40 mins       | did not sleep            |
| TEST 4             | 40 mins       | did not sleep            |
| MEAN SLEEP LATENCY | Y- 40 mins    |                          |



# West of the second seco



- Objective evidence of compliance with treatment obtained
- Fit to drive commercial vehicles
  - Must continue to use CPAP
- Needs annual review

Tom 38-year-old male







### **Take Home Messages**

- COPD
  - Confirm diagnosis
  - Spirometry is important
  - COPD-X Guidelines
- Lung Function Tests
  - Screen with spirometry
  - Don't forget flow volume loop
  - Consider additional tests if spirometry is normal
- OSA
  - Screening questionnaires
  - High pre-test probability of OSA + no significant cardio-respiratory comorbidities consider home sleep study







### Thank you

Questions?