Immunomodulatory drugs (IMiDs) and CelMod-mediated growth suppression of Adult T-Cell Lymphoma/Leukemia (ATL) cells: Functional linkage between Cereblon targets and their down-stream effectors.

Wang Ya,f, Ikebe E a,b,f, Shimosaki S c,f, Iha H a,d,e*, Morishita K c*

a Department of Microbiology, Oita University Faculty of Medicine, Yufu, Oita, Japan;
b Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan;
c Division of Tumor and Cellular Biochemistry, Department of Medical Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan;
d Division of Pathophysiology, The Research Center for GLOBAL and LOCAL Infectious Diseases (RCGLID), Oita University, Yufu, Oita, Japan;
e Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.
f These authors equally contributed to this work.

Cooperator:
Fife N a, Nishizono A a,d, Hori M g, Ogata M h, Tsukamoto Y i, Hijiya N i, Moriyama M i, Hagiwara S i, Kusano S k, Saito M b, Ahmed K e, Uno S l, Minehata K i, Suzuki A i, Nishizono A a,d, Handa H m and Yamamoto J m

m Department of Nanoparticle Translational Research, Tokyo Medical University, Shinjuku, Tokyo, Japan
g Department of Hematology, Ibaraki Prefectural Central Hospital, Kasama, Ibaraki, Japan;
h Department of Hematology and Oncology, Oita University Faculty of Medicine, Yufu, Oita, Japan;
i Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu, Japan;
j Mito Center for Regional Medical Education, University of Tsukuba, Ibaraki, Japan.
k Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan;
l Japan Medical, Bristol-Myers Squibb K.K.

Background:
Adult T-cell lymphoma/leukemia (ATL) is extremely resistant to existing chemotherapy. Recent two clinical studies proved promising curability of Lenalidomide (LEN, a second-generation IMiDs) for ATL patients. IMiDs (immunomodulatory drugs) are known to modulate the substrate specificity of
E3–enzyme cereblon (CRBN) and lead proteasomal degradation of target proteins. We evaluated the machineries of IMiDs-mediated growth suppressive effects on ATL cells.

Methods:
MM cell-lines, NCI-H929 (LEN-sensitive) and RPMI-8226 (LEN-resistant) for control. 13 ATL-related and 3 non-ATL cell-lines for the IMiDs activity assessment. LEN, Pomalidomide (POM, third gen) and Iberdomide (IBE, Cereblon modulator: CelMod) for CRBN modulating activities and growth suppressive effects on ATL cells. Cell Titer assay, Western blot, lentivirus RT-PCR, Gene Knock-Down (KD) were done by standard procedures. Mice xenograft experiments were also conducted.

Results:
Among 13 ATL-related cell lines, HuT102 and TL-Om1 exhibited the best response to LEN doses. CRBN-knockdown (KD) in HuT102 lead accumulation of IKZF1/3 and LEN-resistant growth profiles. IKZF2-KD ED40515 (LEN-resistant) variants turned to LEN sensitive. Oral administration of LEN substantially reduced tumor masses of HuT102-xenograft SCID mice. Finally, we identified IBE-mediated nearly 1000-fold efficient down-regulation of CRBN targets in ATL cells.

Conclusion:
Degradation of LEN/CRBN targets IKZF1/3 and suppression of down-stream effectors IRF4 and cMyc (both have been implied to promote ATL cell malignancy) was confirmed in LEN-responsive HuT102 and TL-Om1. Since they also displayed impaired expression of IKZF2, LEN-mediated growth inhibition was seemingly attributed to functional deprivation of all IKZF1/2/3. Our hypothesis was supported by two gene knockdown experiments (LEN-resistant ED40515 with IKZF2-KD to LEN-sensitive. LEN-sensitive HuT102 with CRBN-KD to LEN-resistant). *In vivo* HuT102-xenografted SCID mice also well responded to LEN oral treatment. Finally, IBE-mediated deeper and wider range of growth suppression to ATL cells implied its potential application as a novel anti-ATL therapeutic agent.

Iha H reports personal fees from Bristol Myers Squibb K.K., Celgene K.K.