Combination antiretroviral therapy and MCL1 inhibition mitigate HTLV-1 infection *in vivo*

<u>Cooney JP,^{1,2}</u>, Allison C^{1,2}, Doerflinger M^{1,2}, Hickey P^{1,2,3}, Hirons A^{5,6}, Dagley LF^{2,3}, Yousef J^{2,3}, Yurick D^{5,6}, Preston SP^{1,2}, Einsiedel L^{4§}, Purcell DFJ^{5,6§}, Pellegrini M^{1,2§*}

¹Division of Infectious Diseases and Immune Defence, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.

²Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.

³Advanced Technology & Biology, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.

 ⁴Department of Medicine, Alice Spring Hospital, Alice Springs, Australia.
⁵Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
⁶The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, VIC, Australia.

Background:

BH3 mimetics are small-molecule therapeutics designed to lower the threshold for the induction of intrinsic apoptosis, a form of cell death, by antagonising the function of pro-survival BCL-2 family members. Many blood cancers, including ATL, are recognised to be associated with elevated levels of pro-survival BCL-2 proteins marking them as attractive therapeutic targets for preferential killing. Here, we assessed the efficacy of clinical-stage BH3 mimetics, venetoclax and S63845, in combination with antiretrovirals, for the treatment of HTLV-1 infection in humanised mice.

Methods:

Humanised NOD SCID IL2 $\gamma^{-/-}$ mice were adoptively transferred autologous HTLV-1infected PBMC before administration of venetoclax or S63845 (BCL-2 or MCL-1 antagonists, respectively) for 3 weeks. Mice were administered antiretrovirals, tenofovir alafenamide and dolutegravir, to mitigate viral spread. HTLV-1c PVL and human cell number were quantified in the periphery at 3-, 5-, and 7-weeks post infection.

Results:

After three weeks of S63845 treatment, HTLV-1c PVL was undetectable in 81% of mice (13 of 16 mice) compared to 20% of control animals (3 of 15 mice) (p=0.0007). Provirus was increasingly detectable at later time points, but this was significantly delayed compared to control ((2.33wks (1.05 to 5.21), median survival (95% CI)) (p=0.0093). Venetoclax treatment did not significantly impact provirus where 54% of drug-treated mice (7 of 13 mice) had undetectable provirus compared to 42% of control mice (5 or 12 mice) at three weeks post infection (p=0.6005). S63845 treatment curtailed HTLV-1c-driven expansion of the CD4⁺ T cell population compared to vehicle treated mice from zero to seven weeks post-infection (5.3-fold and 26.3-fold increase, respectively, p=0.0024).

Conclusion:

We provide a rationale for the use of clinical-stage BH3 mimetics, specifically those targeting MCL-1, in combination with antiretrovirals, for the treatment of established HTLV-1 infection. Our data support the initiation of clinical trials to investigate the efficacy of this strategy against HTLV-1.

Disclosure of Interest Statement:

None to declare.

Acknowledgement of Funding:

This research was funded in part by the Australian Centre for HIV and Hepatitis Virology Research.