

Update on Bone Health

Peter R Ebeling AO MD

Head, Department of Medicine, School of Clinical Sciences Monash University, Australia

> OPTIMISING CARE 2020 September 26 2020

Disclosures

- Research funding from Amgen, Eli-Lilly and Alexion
- Honoraria from Amgen and Gilead

Contributors to the Risk of Osteoporosis in HIV

- Relative contributions of each of these factors to the pathogenesis of osteoporosis: key to developing strategies for prevention and treatment
- Same applies to other comorbid conditions

Bone Loss – Risk Factors for the General Population – 1

- Age > 65 years
- Female
- Family history of osteoporosis and fractures
- Body mass index < 20 kg/m²
- Alcohol consumption > 2 standard drinks per day*
- Smoking*
- Substance abuse*
- Previous low-trauma fracture
- Corticosteroid use (eg. prednisolone > 7.5 mg/day for ≥ 3 months)

4

Bone Loss – Risk Factors for the General Population – 2

- Systemic inflammation (e.g. rheumatoid arthritis)
- Chronic kidney or liver disease
- Post-menopausal
- Hypogonadism in men
- Vitamin D deficiency inadequate exposure to sunlight (taking into account factors such as geographical location, season and skin pigmentation)
- Sedentary lifestyle

Risk Factors for Osteoporosis in PLWHIV

- Duration of HIV
- Low CD4 cell count
- Lipoatrophy
- Increased lactic acid levels
- Vitamin D deficiency, co-infection with hepatitis C, substance abuse, tobacco, alcohol use
- ART* tenofovir disoproxil fumarate (TDF), stavudine, efavirenz, protease inhibitors, ritonavir (increases corticosteroid exposure in those taking oral or inhaled corticosteroids)

*The association of specific antiretroviral agents and bone loss has varies depending on the specific study, the risk factors evaluated and the skeletal site

*Initiation of ART may lead to bone loss, particularly over first 1-2 years' therapy

Male hypothalamic-pituitary-gonadal axis

 57% of cases (N=245) of testosterone deficiency in men with HIV on combination ART are secondary hypogonadism²

1. Wong N et al. Curr Treat Options Infect Dis 2017;9(1):104–16; 2. Gomes AR et al. BMC Infect Dis 2016;16(1):628.

Causes of secondary hypogonadism in men with HIV

- HIV duration
- Low BMI and muscle wasting
- Hypothalamic or pituitary disease, including high prolactin levels
- Cancer (Kaposi sarcoma) or lymphoma
- Pituitary apoplexy (lymphoma, syphilis)
- Infection (M tuberculosis, toxoplasmosis, pneumocystis jiroveci, CMV, candidiasis, hepatitis B and C)

- Infiltration (sarcoidosis, histiocytosis, haemochromatosis) ± DI
- Obesity, T2DM, hypertension, increased CVD risk, age
- Anabolic steroids
- Glucocorticoids
- Opioids, methadone, psychotropic drugs
- ART and its duration

Evaluation of male hypogonadism

 Testosterone treatment will increase lean and muscle mass, and improve QoL and BMD

> GOING BEYOND UNDETECTABLE 9

BMD, bone mineral density; FSH, follicle stimulating hormone; LH, luteinising hormone; PLN, prolactin; QoL, quality of life; TFT, thyroid function test; USS, ultrasound scan. Wong N et al. Curr Treat Options Infect Dis 2017;9(1):104–16.

Vertebral Fractures

- Majority are asymptomatic
- Associated with increased risk of subsequent fractures
- Diagnosis requires lateral thoracic and lumbar spine Xrays (or DXA imaging)
- Associated with chronic pain, height loss, kyphosis, disability
- Common in patients with HIV with a prevalence of 11.1% and a RR of 2.30

Effect of Tenofovir Disoproxil Fumarate Expossure on Fractures

MONASH University

Antiretroviral Therapy and Bone Loss

- Data indicate bone loss in HAART-naïve patients starting therapy¹
- Bone loss appears to be transient and occurs mainly during the first year^{2,3}
- Bone loss is associated with increased levels of bone turnover markers⁴
- Tenofovir disoproxil fumarate (TDF) and protease inhibitors are associated with greater loss^{1,3}
- Specific association between NRTIs, especially TDF, and Fanconi syndrome causing hypophosphataemic osteomalacia (rare)⁵

HAART, highly active antiretroviral therapy; NRTI, nucleoside reverse transcriptase inhibitor, TDF, tenofovir
1. Brown TT and Qaqish RB. AIDS 2006:20;2165–74, 2. McComsey G et al. J Inf Dis 2011;203:1791–801,
3. Haskelberg H et al. PLoS One 2012;7(6):e38377, 4. Bedimo RJ et al. PLoS One 2014;9(8):e106221,
5. Wohl D et al. J Acquir Immune Defic Syndr 2016

TDF-containing Regimens Cause Greater Initial Bone Loss at the Spine and Hip

Suppressed Adults Switched from a TDF-containing regimen to Genvoya¹⁻⁴

• Phase 3, 96-week, multi-centered, randomized, open label, active-controlled

• Atripla (26%, N=376), Stribild (32%, n=459), RTV or COBI-boosted ATV+FTC/TDF (42%, n=601)

- Primary endpoint: proportion of patients with undetectable viral load (HIV-1 RNA < 50 copies per mL) at week 48
- Secondary outcomes:
 - Hip bone mineral density
 - Change in serum creatinine
- Spine bone mineral density
- Change in efavirenz-related symptom score

Genvoya: single-tablet regimen elvitegravir 150mg/ cobicistat 150mg/ emtricitabine 200mg/ tenofovir alafenamide 10mg STB = Stribild = single-tablet regimen elvitegravir 150mg/ cobicistat 150mg/ emtricitabine 200mg/ tenofovir DF 300mg ATR = Atripla = single-tablet regimen efavirenz 600mg/ emtricitabine 200mg/ tenofovir DF 300mg ATV = atazanavir, COBI = cobicistat, RTV = ritonavir

- 1. Mills A, et al. Lancet Infect Dis 2015;
- 2. Shamblaw D, et al. ICAAC 2015, San Diego, CA. Oral

Thompson M, et al. ID Week 2015. San Diego, CA. Oral #725

4. Rijnders B, et al. EACS 2015. Barcelona, Spain. Oral # PS10/3

Changes in Spine and Hip BMD through Week 96

 Suppressed Adults Switched from a TDF-containing regimen to E/C/F/TAF

Switching to E/C/F/TAF from a regimen containing FTC/TDF + 3rd agent resulted in progressive increase in spine and hip BMD over 96 weeks

Effects on BMD over 48 Weeks in Virologically Suppressed Patients

	GENVOYA N=799	Continued FTC/TDF + Third Agent* N=397
Subjects who experienced BMD declines, %		
≥5% at the lumbar spine	1	6
≥7% at the femoral neck	1	4

Bone as an endocrine organ

GOING BEYOND UNDETECTABLE 17

Effect of TDF on bone metabolism in adolescents and young men on PrEP

- High exposure to TDF as PrEP was associated with >3% decrease in hip BMD at 48 weeks compared to low exposure
- A decrease in FGF-23 was associated with increases in PTH and bone turnover markers
- It is likely endocrine disruption (PTH-FGF23) is a primary contributor to TDF-associated BMD decline in this age group (mean±SD age, 19.6±1.8 years)
- Bone loss and fractures are of potential concern in men starting TDF as PrEP
- Adverse effects will be greatest for those with the highest baseline absolute fracture risk, based on BMD and clinical risks

Effect of Alendronate on BMD in HIV-infected Patients

- Randomized, placebo-controlled, double-blinded phase II trial in osteopenic (lumbar T-score < -1.5) HIV-infected patients (71% men)
- Alendronate 70 mg QW + vitamin D + calcium (500 mg/200 IU BID) (n = 42)
 Alendronate
- Placebo + vitamin D + calcium (n = 40)
- No significant AEs
- Black race associated with smaller change from baseline with alendronate (P = .003)

Effect of iv Zoledronate on BMD in HIV Infected Men

Zoledronic Acid Reduces BTMs for 5 Yrs in Men with HIV

Bolland MJ et al. J Clin Endocrinol Metab 2012

ZOL vs TDF switch for low BMD CONSORT chart

ZOL vs TDF switch for low BMD

Screening / baseline characteristics

Variable	ZOL	TDF switch
Valiable	n=43	n=42
Age (yrs)	49	51
Sex (male %)	93	100
Ethnicity (white, %)	74	81
CD4 count (cells/mm ³)	626	609
TDF duration (yrs)	5.7	6.0
Boosted PI (%)	23	21
Weight (kg)	75	75
T-scores (median)		
spine	-1.7	-1.6
left total hip	-1.4	-1.1
eGFR (mL/min)	93	91

ZOL vs TDF switch for low BMD BMD and fractures over 2 years

- ZOL vs TDF-switch arms
 - Wk 48 3.2% (95%Cl 1.7-4.7)
 - Wk 96 4.4% (95%Cl 2.6-6.3)
 - both p-values <0.001</p>

ZOL vs TDF switch for low BMD Bone turnover markers over 2 years

- p<0.001 at each time point and overall
- TDF switch group, decrease at Week 4 in
 - CTX: -20% vs
 - P1NP: -4%

Region	P1NP		C	ГХ
	r ²	Ρ	r ²	Р
Spine	-0.44	<0.001	-0.36	0.001
Hip	-0.45	<0.001	-0.23	0.051

ZOL vs TDF switch for low BMD CONSORT chart (per protocol)

ZOL vs TDF switch for low BMD Changes in BMD

ZOL vs TDF switch for low BMD Changes in BTMs M3 vs changes in BMD M36

Left hip

Spine

P1NP (rho -0.472, P<0.001)

CTX (rho -0.181, P=0.15)

ZOL vs TDF switch for low BMD

Fractures

Fractures		ZOL n=43	TDF switch n=42	P-value
Month 24	events	1	7	0.03
	patients	1 (2%)	4 (10%)	0.20
Month 36	events	3	10	0.04
	humerus	1	0	
	wrist	0	3	
	spine	1	1	
	ribs	1	3	
	hand / foot	0	3	
	patients	2 (5%)	6 (14%)	0.16

ZOL vs TDF switch for low BMD Limitations

- Almost all white, adult men
- Pre-TAF, but switch to TAF unlikely to be superior to switch to ABC or INSTI
- Not powered for fracture events

ZOL vs TDF switch for low BMD Conclusions

- Superiority of ZOL relative to TDF switching persisted at Month 36
- BMD increase with ZOL persisted through Month 36, even though the last dose of ZOL was at Month 12
- Early changes in P1NP better predicted BMD changes at 36 months than early changes in CTX

Bone Health – Screening

- Serum calcium, phosphate, magnesium, 25-OH vitamin D and testosterone levels
 - Frequency: annually
 - Replacement therapy as required
 - If mild or moderate vitamin D deficiency, check serum phosphate, ALP and parathyroid hormone
- Calculation of absolute fracture risk
 - FRAX[®] fracture risk calculator available online
 - Only useful if patient is > 40 years old
 - May underestimate risk in patients with HIV
 - Add HIV as a 'secondary cause' of osteoporosis

Absolute Fracture Risk Assessment Tools FRAX ®

Home	Calculation Too	ol 🔍	Paper Charts	FAQ	References	English
alculation T	ool			_ (E	
ease answer the ques	tions below to calcula	ate the ten y	year probability o	of fracture with BMD		
Questionnaire: 1. Age (between 40-90 ye: Age: Date of birt	ars) or Date of birth h: M:D:	10. Secondar 11. Alcohol 3 12. Femoral r	y osteoporosis or more units per day neck BMD (g/cm²)	⊙ No ◯ Yes ⊙ No ◯ Yes		Weight Conversion Pounds Kgs Convert
2. Sex O 3. Weight (kg) 4. Height (cm) 5. Previous fracture	Male 🕞 Female		Clear (Calculate		Height Conversion
6. Parent fractured hip 7. Current smoking	⊙ No Yes ⊙ No Yes					
8. Glucocorticoids 9. Bhoumataid arthritic	No Ves				0	

Effect of Denosumab on Fracture Risks at 36 Mths FREEDOM Trial

Cummings SR, et al. N Engl J Med. 2009;361:756-765.

Effect of 7 or 10 Years Treatment with Denosumab on Vertebral and Non-vertebral Fractures – FREEDOM Extension Trial

Effect of 7 or 10 Years Treatment with Denosumab on Spinal and Total Hip BMD FREEDOM Extension Trail

Denosumab Re-treatment and Changes in Lumbar Spine and Total Hip BMD Phase 2 Study in Women With Low BMD

Miller PD, et al. *Bone*. 2008;43:222-229

Denosumab Re-treatment and Changes to Serum CTx and BSAP Levels Phase 2 Study in Women With Low BMD

BSAP

---- Placebo

🚣 30 mg Q3M

Discontinuing Denosumab After 8 Years *Lumbar Spine BMD*

恐 MC

ealth

Vertebral Fractures After Discontinuing Denosumab or Placebo in FREEDOM Study

- Vertebral fracture risk was assessed in patients who discontinued either placebo or denosumab in the FREEDOM study or who stopped denosumab in the FREEDOM Extension study and who had a follow-up at least 7 months after their last dose
- Fracture risk increased upon stopping denosumab but not to levels greater than seen in those who stopped placebo

40

Significant Predictors of Off-treatment MVF

- Prior vertebral fracture is the strongest predictor of off-treatment vertebral fractures
- Other predictors of MVF were time off-treatment and rate of off-treatment total hip BMD loss

	772 patients included ⁺	1,471 patients included [*]
Significant covariates	OR (95% CI)	OR (95% CI)
Prior vertebral fracture [‡] (yes vs no)	3.6 (1.8–7.1)	3.9 (2.1–7.2)
Off-treatment duration (per year)	1.4 (1.1–1.7)	1.6 (1.3–1.9)
Annualised off-treatment total hip BMD loss [§] (per 1%)	1.2 (1.1–1.3)	NA

*1,471 patients included 470 patients who discontinued placebo and 1,001 patients who discontinued denosumab; †772 patients included 307 patients who discontinued placebo and 465 patients who discontinued denosumab, and had available off-treatment annualised total hip BMD change assessments; ‡"Prior VFx" includes any VFx sustained before or during treatment; §"Off-treatment annualized total hip BMD loss" was defined as annualised percent change in total hip BMD after treatment discontinuation, ie, between the last on- and off-treatment BMD assessments. BMD = bone mineral density; CI = confidence interval; NA = not applicable; OR = odds ratio;

Adapted from: Cummings SR, et al. J Bone Miner Res. 2017; [Published only ahead of print November 4, 2017]. 10.1002/jbmr.3337.

The effects of denosumab are reversible when discontinued without follow-on therapy, and overall risk of fracture, including vertebral fracture returns to that of untreated patients. Some patients might be at high risk of developing multiple vertebral fractures¹⁻³

Follow-on alendronate therapy prevented reductions in spine and hip BMD in subjects who discontinued denosumab

BMD=bone mineral density

1. Freemantle N, et al. Osteoporos Int 2012;23:317–26.

Follow-on therapy with zoledronic acid mitigates bone loss at the lumbar spine after discontinuing denosumab

*56% of hip BMD increase was retained at 2 years. [†]0% of hip BMD increase was retained at 2 years. [‡]87% of hip BMD increase was retained at 1 year. BMD=bone mineral density; Romo=romosozumab; ZA=zoledronic acid; ZOL=zoledronate

1. Lehman T, et al. Osteoporos Int. 2017;28:3067–68. 2. Reid IR, et al. Calcif Tissue Int. 2017;101:371–74.

3. Horne AM, et al. Calcif Tissue Int. 2018. DOI:10.1007/s00223-018-0404-6.

Vertebral Fractures Are the First Fractures to Manifest After Bisphosphonate Discontinuation

 After discontinuing ALN or ZOL, vertebral fractures increase over 3–5 year follow-up periods^{1,2}

*Morphometric vertebral fractures were not increased. [†]Subjects previously received ALN for an average of 5 years during (and after) FIT enrolled in FLEX and re-randomized to either PBO or ALN. [‡]Other fracture types included non-vertebral, hip, forearm, and all clinical fractures.

ALN=alendronate; FIT=Fracture Intervention Trial; FLEX=Fracture Intervention Trial Long-term Extension; PBO=placebo; ZOL=zoledronic acid

1. Adapted from: Black DM, et al. JAMA. 2006;296:2927-2938. 2. Adapted from: Black DM, et al. J Bone Miner Res. 2012;27:243-254.

- Sequential therapy for osteoporosis may be considered
 - When there has been significant bone loss or a fracture on antiresorptive therapy for >12 months
 - In the presence of adverse events
 - Insufficient adherence, e.g. the elderly
 - Dosing inconvenience or intolerance with oral bisphosphonate therapy
 - Patients with CKD where bisphosphonates are contraindicated
 - To consolidate increases in BMD following anabolic therapy

Head-to-head Studies of Denosumab vs Bisphosphonates in Both Pre-treated or Treatment-naïve Subjects

Roux C et al, ASBMR; Minneapolis, MN; October 12-15, 2012.

This information has been provided to you in response to your unsolicited request.

Menu

Osteoporosis risk assessment, diagnosis and management

Recommendations restricted to postmenopausal women and men aged >50 years

Managing Osteoporosis in Patients on Long-Term Bisphosphonate Treatment: Report of a Task Force of ASBMR

Approach for Management of Postmenopausal Women on Long Term Bisphosphonate Therapy

Adler RA et al., J Bone Miner Res 2016

Recommendations for Management of Bone Disease in HIV

- Guidelines for ART should be followed; adjustment should avoid TDF or boosted protease inhibitors in at-risk patients
- Dietary and lifestyle management strategies for high-risk patients should be employed and anti-osteoporosis treatment initiated – the best evidence is for zoledronic acid which avoids issues with poor compliance

EACS Bone Health Guidelines v8.2 January 2017

Reducing risk	 Aim to decrease falls by addressing fall risks⁽ⁱ⁾
of fractures	 Ensure sufficient dietary calcium (1-1.2 g daily) and
	vitamin D (800-2,000 IU daily) intake ⁽ⁱⁱ⁾
	 Where appropriate, screen for osteoporosis⁽ⁱⁱⁱ⁾ and
	refer to national/regional guidelines on treatment of
	osteoporosis
	 If no guidelines available, consider bisphosphonate^(iv)
	treatment in all osteoporotic postmenopausal women
	and men > 50 years old (BMD T-score ≤ -2.5) and
	those with a history of fragility fracture. Consider
	treatment based on BMD alongside consideration of
	other risk factors for fracture, especially age.
	 Use bisphosphonate and ensure adequate calcium and vitamin D intake
	 No significant interactions between bisphosphonates and antiretrovirals
	 If antiretroviral naïve, consider options for ART that preserve BMD^(v)
	 If diagnosed with osteoporosis and requiring therapy, consider optimising ART to preserve or improve BMD
	 In complicated cases (e.g. young men, premenopausal
	women, recurrent fracture despite bone protective thera-
	py), refer to osteoporosis specialist
	 If on bisphosphonate treatment, repeat DXA after 2
	years and reassess need for continued treatment after
	3-5 years

EACS European AIDS Clinical Society

British HIV Association Bone Health Guidelines 2016

Tenofovir-AF may therefore be used in individuals with bone-related contraindication to tenofovir-DF

8.10.3.1 Recommendations

 We recommend against the use of tenofovir-DF in individuals aged >40 years with osteoporosis, a history of fragility fracture, or a FRAX score consistent with high risk of a major osteoporotic fracture, if acceptable alternative ARV agents are available (1B).

8.10.4 Switching treatment

8.10.4.1 Recommendations

• We recommend against continued use of tenofovir-DF in individuals >40 years who are diagnosed with osteoporosis, have sustained a fragility fracture, or have a FRAX score of >20% (major osteoporotic fracture) if acceptable alternative ARV agents are available (1C).

Tenofovir-AF as part of initial therapy is associated with significantly less decline in BMD compared with tenofovir-DF, consistent with other first-line ARV regimens [21]; in addition, switching from tenofovir-DF to tenofovir-AF containing therapy is associated with improvements in BMD [22]. Tenofovir-AF may therefore be used in individuals with bone-related contra-indication to tenofovir-DF.

Conclusions

- HIV infection is associated with an increased risk of vitamin D deficiency, osteoporosis and fracture
- The pathogenesis of osteoporosis associated with HIV infection is multifactorial and several risk factors are modifiable
- Bone health should be assessed in all HIV-infected individuals
- Treatment with bone protective therapy should be considered in patients with a fracture, after exclusion of osteomalacia, and in others with a high fracture probability

