Time to detection of hepatitis C virus infection with the Xpert HCV Viral Load Fingerstick Point-of-Care Assay: Facilitating a more rapid time to diagnosis

Jason Grebely¹, Beth Catlett¹,², Indika Jayasinghe¹, Andrey Verich¹, Heather Valerio¹, Philip Cunningham¹,², Behzad Hajarizadeh¹, Sahar Bajis¹, Marianne Martinello¹, Shane Tillakeratne¹, Gregory J. Dore¹, and Tanya L. Applegate¹ on behalf of the ETHOS Engage Study Group

¹The Kirby Institute, UNSW Sydney, Australia; ²NSW State Reference Laboratory for HIV, St Vincent’s Centre for Applied Medical Research, Darlinghurst, Sydney, Australia.
Disclosures

- JG has received research funding and speaker fees from AbbVie, Cepheid, Gilead Sciences and Merck/MSD

- In-kind support was provided by Cepheid for Xpert HCV Viral Load Fingerstick Point-of-Care cartridges and GeneXpert equipment related to this project

- This presentation will include the discussion of the investigative use of medical devices (Xpert HCV Viral Load Fingerstick, Cepheid)
Background/rationale

- Current two-step pathway for HCV testing leads to a drop-off in diagnosis\(^1\)\(^-\)\(^4\)

- Point-of-care HCV testing increases testing and linkage to care\(^1\)

- Xpert HCV Viral Load Fingerstick assay uses real-time PCR technology for HCV RNA quantification
 - Enables same-day diagnosis of active infection in one hour with good sensitivity and specificity\(^5\)\(^-\)\(^7\)

- Time to detection of HCV RNA varies according to the level of virus present

- Further work is needed to reduce the time from sample collection to diagnosis of active infection

Study Aim

• To evaluate the time to HCV RNA detection using the Xpert HCV Viral Load Fingerstick assay among participants attending drug treatment and needle and syringe program services in Australia
Study Design and Participants - ETHOS Engage Cohort

Study design: Observational cohort study

Study setting: Drug treatment clinics and needle and syringe programs

Study recruitment period: May 2018-May 2019

Inclusion criteria:
- ☑ 18 years of age or older;
- ☑ Written informed consent;
- ☑ History of injecting drug use;
- ☑ Recent injecting drug use (previous 6 months) OR currently receiving OST.

Exclusion criteria:
- ❌ Women who are pregnant
ETHOS Engage campaign recruitment days

1. Study Enrolment
 - Informed consent

2. Point-of-care testing
 - GeneXpert

3. Fibroscan
 - Median stiffness

4. Participant Survey
 - Demographics
 - Injecting history
 - HCV experience

5. Clinical Assessment
 - Consultation with clinic nurse
Xpert HCV Viral Load Fingerstick testing

1. Puncture the fingertip with a lancet
2. Collect 100µL capillary blood by fingerstick into a Minivette
3. Load blood directly into Xpert HCV Viral Load Fingerstick cartridge
4. Place Xpert HCV Viral Load Fingerstick cartridge into GeneXpert machine
Xpert HCV Viral Load Fingerstick

- Xpert HCV Viral Load Assay Fingerstick testing was performed on a GeneXpert R2 6-colour, 4 module machine (GXIV-4-L System, 900-0513, GeneXpert Dx software v4.6a)

- Problem: While the assay is running, it is not possible to see what the cycle threshold is or at what point the sample crosses the cycle threshold (detectable HCV RNA)
Statistical Analyses

- Assessed the time to detectable result with the Xpert HCV Viral Load Fingerstick
 - evaluated by multiplying the cycle threshold (cycle at which the HCV RNA crosses the threshold and is considered detectable) by the cycle time (~80 seconds)

- Analyses were performed to assess the time to HCV RNA detection in relation to the high and low internal controls, given that the positive controls always need to be positive (and reflects the minimum time to detection which is possible)

- Assessed the number and proportion of tests in this population sample that could be detected at an earlier time
Participant characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>n=1,087</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (25%, 75%)</td>
<td>43 (37-50)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>698 (64%)</td>
</tr>
<tr>
<td>Female</td>
<td>383 (35%)</td>
</tr>
<tr>
<td>History of injecting drug use</td>
<td>1,087 (100%)</td>
</tr>
<tr>
<td>Injecting drug use in the last month</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>380 (35%)</td>
</tr>
<tr>
<td>Yes</td>
<td>704 (65%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>3 (0.3%)</td>
</tr>
<tr>
<td>Frequency of drug use in the last month</td>
<td></td>
</tr>
<tr>
<td>Less than weekly</td>
<td>187 (27%)</td>
</tr>
<tr>
<td>More than weekly, but not daily</td>
<td>187 (27%)</td>
</tr>
<tr>
<td>Daily or more</td>
<td>330 (47%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>3 (0.4%)</td>
</tr>
</tbody>
</table>
Enrolled participants (n=1,087)

Did not have a valid result (n=34)
- Errors due to low sample volume (n=16, 1.4%)
- Invalid results due to the internal controls being out of range (n=17, 1.5%)
- Other (n=1, 0.1%)

Available fingerstick sample (n=1,053)

HCV RNA detected (n=268, 25%)
HCV RNA level versus time
Time to HCV RNA detection

<table>
<thead>
<tr>
<th>HCV status</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undetectable (n=785)</td>
<td>57 minutes</td>
</tr>
<tr>
<td>Detectable (n=268)</td>
<td>34 minutes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCV RNA level</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\geq 10,000,000) IU/mL (n=3)</td>
<td>26 minutes</td>
</tr>
<tr>
<td>1,000,000-9,999,999 IU/mL (n=113)</td>
<td>29 minutes</td>
</tr>
<tr>
<td>100,000-999,999 IU/mL (n=72)</td>
<td>33 minutes</td>
</tr>
<tr>
<td>10,000-99,999 IU/mL (n=38)</td>
<td>38 minutes</td>
</tr>
<tr>
<td>1,000-9,999 IU/mL (n=19)</td>
<td>43 minutes</td>
</tr>
<tr>
<td>Quantifiable – <1,000 IU/mL (n=23)</td>
<td>50 minutes</td>
</tr>
</tbody>
</table>

91% >1,000 IU/mL
Time to HCV RNA detection in HCV RNA+ (n=260)

- 62% (n=159) detected in 31 minutes
- 91% (n=237) detected in 45 minutes
High and low controls

<table>
<thead>
<tr>
<th></th>
<th>High internal control</th>
<th>Low internal control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=260</td>
<td>n=260</td>
</tr>
<tr>
<td>Minimum (minutes)</td>
<td>29</td>
<td>43</td>
</tr>
<tr>
<td>Median (minutes)</td>
<td>31</td>
<td>45</td>
</tr>
<tr>
<td>Maximum (minutes)</td>
<td>34</td>
<td>49</td>
</tr>
</tbody>
</table>
Xpert HCV Viral Load Fingerstick

Cycle threshold (Ct): 30-50

High positive control: (10^6 copies/mL)

Low positive control: (10^3 copies/mL)
Practical utility

• Wait for the high internal control to amplify first (e.g. you could use 30-50 fluorescence units as the cut-off with an expected cycle threshold (Ct) range)
 • This is a first step quality control check

• With negative samples, there should be no/limited fluorescence for the HCV target

• With positive samples, you could use the same 30-50 fluorescence unit cut-off for the expected cycle threshold (Ct) range

• With suspected HCV RNA detection, could begin discussions about treatment

• Wait until the assay has completed to ensure validity
Conclusions

• The time to HCV detection was lower in people with detectable HCV RNA (34 minutes) compared to people with undetectable HCV RNA (57 minutes)

• Faster time to HCV RNA detection with higher HCV RNA levels

• These findings suggest that a more rapid time to an HCV diagnosis could be achieved by monitoring the time at which HCV RNA is first detected with the Xpert HCV VL FS test, rather than waiting until assay completion

• These findings could lead to reduced wait times for an HCV diagnosis and improve linkage to treatment
Implications

• Assay was originally developed as a quantitative assay and requires both the high and low internal controls to be completed for a valid test result.

• CE-IVD registration of a new assay would require substantial work including verification and validation studies.

• Need to consider potential modifications that would enable the user to easily determine once an HCV RNA level is above the detectable threshold (e.g. software notification or alarm when detectable threshold is reached):
 • Consideration of the high and low internal controls is required.

• Are there other potential solutions (e.g. “middleware” software)?
Acknowledgements

All participants who have contributed their time and data to our study, and:

Kirby Institute
- Greg Dore
- Heather Valerio
- David Silk
- Beth Catlett
- Indika Jayasinghe
- Hannah Reid
- Valerie Gleeson
- Shane Tillakerante
- Pip Marks
- Alison Marshall

PSC
- Nicky Bath
- Carla Treloar
- Andrew Milat
- Adrian Dunlop
- Janaki Amin
- Charles Henderson
- Emma Day
- Nikitah Habraken
- Kyle Leadbeatter
- Jo Holden

- Louisa Degenhardt
- Phillip Read
- Clarke Scott

Site PIs
- Nadine Ezard
- David Reid
- Carla Gorton
- Michael Edwards
- Jeremy Hayllar
- Prasun Datta
- Thao Lam
- Alex Wade
- Sally Spruce

NUAA
- Sara Adey
- Rodd Hinton
- Mary Harrold

Logos of various organizations are also included.