HTLV-1 infection promotes excessive T cell activation and transformation into adult T cell leukemia/lymphoma

Tan BJY¹, Sugata K¹, Reda O¹, Matsuo M¹, Uchiyama K², Miyazato P¹, Hahaut V³, Yamagishi M⁴, Uchimaru K⁴, Suzuki Y⁵, Ueno T⁶, Suzushima H⁷, Katsuya H⁸, Tokunaga M⁹, Uchiyama Y¹⁰, Nakamura H¹¹, Sueoka E¹², Utsunomiya A⁹, Ono M¹³, Satou Y¹

¹Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
²School of Medicine, Kumamoto University, Kumamoto, Japan
³Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
⁴Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
⁵Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
⁶Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
⁷Department of Hematology, Kumamoto Shinto General Hospital, Kumamoto, Japan
⁸Division of Hematology, Respiratory Medicine and Oncology, Saga University, Saga, Japan
⁹Department of Hematology, Imamura General Hospital, Kagoshima, Japan
¹⁰Division of Informative Clinical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
¹¹Department of Transfusion Medicine, Faculty of Medicine, Saga University, Saga, Japan
¹²Department of Clinical Laboratory Medicine, Faculty of Medicine, Saga University, Saga, Japan
¹³Department of Life Sciences, Imperial College London, London, United Kingdom

Background:
Human T cell leukemia virus type 1 (HTLV-1) mainly infects CD4+ T cells and induces an asymptomatic but chronic, persistent infection in infected individuals. However, some asymptomatic carriers’ progress to develop an aggressive T cell malignancy known as adult T cell leukemia/lymphoma (ATL). HTLV-1 alters cellular differentiation, activation, and survival; however, it is unknown whether and how these changes contribute to the malignant transformation of infected cells.

Methods:
In this study, we obtained peripheral blood mononuclear cells (PBMCs) from 12 HTLV-1-infected and 3 uninfected individuals and performed single-cell RNA-sequencing and T cell receptor–sequencing to investigate the differentiation and HTLV-1–mediated transformation of T cells.

Results:
In total, we analyzed 87,742 PBMCs from 15 individuals. Using multiple independent bioinformatics methods, we demonstrated the seamless transition of naive T cells into activated T cells, whereby HTLV-1-infected cells in an activated state further
transformed into ATL cells, which are characterized as clonally expanded, highly activated T cells. Notably, the greater the activation state of ATL cells, the more they acquire signatures of regulatory T cells. Intriguingly, infected cells uniquely upregulate HLA class II genes which is further induced in ATL cells. Ex vivo cultivation of HTLV-1-infected cells showed that this upregulation occurred concurrently with the expression of viral protein Tax. Functional assays revealed that by upregulating HLA class II molecules, HTLV-1-infected cells can act as antigen-presenting cells. However, as these cells lack the necessary co-stimulatory molecules, they could induce anergy of antigen-specific T cells.

Conclusion:
In conclusion, our study revealed at the single cell level how HTLV-1 exploits physiological T-cell activation mechanisms and may act as tolerogenic antigen-presenting cells for leukemic transformation and immune evasion in vivo.

Disclosure of Interest Statement:
Nothing to disclose.