Hepatitis C: The Treatment Landscape in 2017

On the road to HCV elimination?

Professor Greg Dore

Disclosures

Funding and speaker fees from AbbVie, Bristol-Myers Squibb, Gilead Sciences and Merck
HCV Treatment in 2017

- Overview of DAA uptake in 2016 and early 2017
- Patterns of DAA treatment, including prescriber type
- HCV treatment among sub-populations: cirrhosis and PWID
- HCV elimination modelling
- DAA treatment outcomes: REACH-C study
- Strategies to continue DAA uptake

Evolution of HCV therapies

Adapted from Dore G, Feld JJ. Clin Infect Dis 2015;60:1829–36

<table>
<thead>
<tr>
<th>Tolerability</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 weeks</td>
<td>PEG-IFN + RBV + SMV</td>
</tr>
<tr>
<td>24–48 weeks</td>
<td>SOF + RBV</td>
</tr>
<tr>
<td>24 weeks</td>
<td>PEG-IFN + TVR</td>
</tr>
<tr>
<td>12 weeks</td>
<td>PEG-IFN + RBV</td>
</tr>
<tr>
<td></td>
<td>IFN</td>
</tr>
</tbody>
</table>

BOC: boceprevir; DCV: daclatasvir; DSV: dasabuvir; EBR: elbasvir; GZR: grazoprevir; LDV: ledipasvir; OMV: ombitasvir; PEG-IFN: pegylated interferon; PTV: paritaprevir; RBV: ribavirin; RTV: ritonavir; SMV: simeprevir; SOF: sofosbuvir; TVR: telaprevir
Evolution of HCV therapies

Adapted from Dore G, Feld JJ. Clin Infect Dis 2015;60:1829–36

Australian Government-funded DAAs

Gilead Sciences, SOVALDI Australian PI, March 2015; Gilead Sciences, HARVONI Australian PI, June 2016; Bristol-Myers Squibb, DAKLINZA Australian PI, August 2016; AbbVie; VIEKIRA PAK-RBV PI, August 2016, Merck Sharp & Dohme, ZAPATIER ARTG August 2016; Gilead Sciences, EPCLUSA Australian PI August 2017
Australia has prepared the foundation for elimination of HCV as a major public health issue, by 2026-2030

HCV care cascade in Australia: end 2015

HCV treatment in Australia

- DAA therapy for all Australians ≥18 years with chronic HCV
- No liver disease stage, or drug and alcohol restrictions
- Broad practitioner base (including GPs) with public hospital (S100) and community pharmacy (S85) dispensing

<table>
<thead>
<tr>
<th>Date listed</th>
<th>Generic name</th>
<th>Genotype</th>
<th>Duration (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2016</td>
<td>Sofosbuvir/Ledipasvir</td>
<td>1</td>
<td>8-24</td>
</tr>
<tr>
<td></td>
<td>Sofosbuvir + Daclatasvir</td>
<td>1, 3</td>
<td>12-24</td>
</tr>
<tr>
<td></td>
<td>Sofosbuvir + Ribavirin</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Sofosbuvir + Peg-IFN + Ribavirin</td>
<td>1, 3, 4-6</td>
<td>12</td>
</tr>
<tr>
<td>May 2016</td>
<td>Paritaprevir/Ritonavir/Ombitasvir + Dasabuvir +/− Ribavirir</td>
<td>1</td>
<td>12-24</td>
</tr>
<tr>
<td>Jan 2017</td>
<td>Grazoprevir/Elbasvir</td>
<td>1, 4</td>
<td>12-16</td>
</tr>
<tr>
<td>August 2017</td>
<td>Sofosbuvir/Velpatasvir</td>
<td>1-6</td>
<td>12</td>
</tr>
</tbody>
</table>

HCV treatment in Australia

IFN-based vs. IFN-free

32,550 =14% chronic HCV

HCV treatment in Australia: DAA duration

Kirby Institute 2016 (http://kirby.unsw.edu.au/research-programs/vhcrp-newsletters)

HCV treatment in Australia: Age distribution

Dotted line represent the age distribution among people living with chronic HCV in 2015 in Australia
DAA treatment uptake is encouraging in key populations for HCV elimination goals: people with cirrhosis and people who inject drugs
HCV treatment in Australia: Cirrhosis DAA uptake

![Graph showing HCV treatment uptake by stage and treatment type](image)

- **Not-treated**
- **PBS (2016)**
- **Generic (2015)**
- **Clinical Trials (2014-15)**
- **Early access program (2014-15)**

Early access program (n=1,930): 95% F4; 5% F0-F3
Clinical Trial (n=911): 25% F4; 75% F0-F3
Generic (n=1,500): 30% F4; 70% F0-F3 [Freeman EASL 2016]
PBS (n=32,400): 36% F4; 64% F0-F3

HCV treatment uptake: current PWID (ANSPS)

Recent and ever HCV treatment uptake 2012 to 2016*

![Graph showing recent and ever HCV treatment uptake](image)

- **Ever (lifetime history)**
- **Recent (last 12 months)**

* Among HCV antibody positive respondents who did not self-report spontaneous clearance
** Respondents with prior treatment-induced clearance were excluded when assessing recent treatment uptake
*** 2012-2016 p-trend<0.001

Iversen J, et al. AVHEC 2017
DAA treatment outcomes are encouraging, but enhanced efforts are required to improve post-treatment follow-up
Real world efficacy of DAAs

REACH-C
- Observation cohort from a national network of diverse clinics
- March to December 2016, 1618 patients initiated treatment

<table>
<thead>
<tr>
<th>Clinic</th>
<th>Patients</th>
<th>Location</th>
<th>Type of service/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cairns and Hinterland HHS</td>
<td>608</td>
<td>Cairns, QLD</td>
<td>Tertiary, sexual health, outreach specialist, drug and alcohol, prison</td>
</tr>
<tr>
<td>Kirketon Road Centre</td>
<td>111</td>
<td>Sydney, NSW</td>
<td>Primary care</td>
</tr>
<tr>
<td>Langton Centre</td>
<td>34</td>
<td>Sydney, NSW</td>
<td>Drug and alcohol</td>
</tr>
<tr>
<td>Matthew Talbot Hostel</td>
<td>10</td>
<td>Sydney, NSW</td>
<td>Primary care</td>
</tr>
<tr>
<td>Prince St Medical Centre</td>
<td>82</td>
<td>Orange, NSW</td>
<td>General practice</td>
</tr>
<tr>
<td>Royal Adelaide Hospital</td>
<td>113</td>
<td>Adelaide, SA</td>
<td>Tertiary</td>
</tr>
<tr>
<td>Scope Gastroenterology</td>
<td>171</td>
<td>Melbourne, VIC</td>
<td>Private specialist practice</td>
</tr>
<tr>
<td>St Vincent’s Hospital</td>
<td>426</td>
<td>Sydney, NSW</td>
<td>Tertiary, drug and alcohol</td>
</tr>
<tr>
<td>The Byrne Surgery</td>
<td>28</td>
<td>Sydney, NSW</td>
<td>General practice</td>
</tr>
<tr>
<td>Toormina Medical Centre</td>
<td>34</td>
<td>Coffs Harbour, NSW</td>
<td>General practice</td>
</tr>
</tbody>
</table>

Baseline characteristics

- ≥50 years old: 56%
- Male: 70%
- HIV Positive: 8%
- Cirrhosis: 19%
- Injecting drug use in past 6 months: 15%
- Current OST: 19%

HCV Genotype

- Genotype 1a: 57%
- Genotype 1b: 37%
- Genotype 2a: 1%
- Genotype 3a: 1%
- Other: 1%
- Unknown: 4%
Real world efficacy of DAAs

Overall treatment outcomes

Treatment commenced
n=18148

Expected SVR12 by 31 Mar 2017
n=1435

Lost to follow-up (n=45)
Death (n=5)
Unknown SVR (n=216)

SVR
n=1126
Intention to treat: 79.5%
Per protocol: 96.5%

No SVR
n=309
Virological failure (n=18)
Reinfection (n=10)
Other (n=2)
Unknown reason (n=21)

SVR12: sustained virological response 12 weeks after treatment; ITT: intention to treat; PP: per protocol

Real world efficacy of DAAs

SVR12 rates by genotype

per protocol analysis

<table>
<thead>
<tr>
<th>Genotype</th>
<th>SVR12 Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>97.5%</td>
</tr>
<tr>
<td>1b</td>
<td>97.1%</td>
</tr>
<tr>
<td>2</td>
<td>96.4%</td>
</tr>
<tr>
<td>3</td>
<td>94.9%</td>
</tr>
<tr>
<td>4</td>
<td>77.8%</td>
</tr>
<tr>
<td>Other</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genotype</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>553</td>
</tr>
<tr>
<td>1b</td>
<td>102</td>
</tr>
<tr>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>393</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Other</td>
<td>46</td>
</tr>
</tbody>
</table>
Real world efficacy of DAAs

SVR12 rates by clinical characteristics

per protocol analysis

Real world efficacy of DAAs

Missing SVR12 by clinical characteristics

IDU: injecting drug use; OST: opioid substitution therapy
Diverse models of care and DAA access settings are crucial for continued treatment uptake
HCV treatment uptake: 2015-2016

% of chronic HCV

CDA 2017: Polaris Observatory (http://centerforda.com/polaris/)

CDA 2017: Polaris Observatory (http://centerforda.com/polaris/)
HCV treatment in Australia: Prescriber type

Kirby Institute 2017 (http://kirby.unsw.edu.au/research-programs/vhcrp-newsletters)

HCV treatment in Australia: 2016

Total: 32,400

Kirby Institute 2017 (http://kirby.unsw.edu.au/research-programs/vhcrp-newsletters)
DAA initiations in community pharm. (3,500; >60%)

Data Source: QuintilesIMS and NostraData

DAA prescriptions (total) per month: PBS

Data Source: Prospection
Key points regarding DAA uptake

- 2016 was always going to be a bumper year, given the broad eligibility and “warehouse” effect

- DAA uptake in 2017 will clearly be lower than 2016, but unclear how much lower: may be less than 25,000

- HCV elimination by 2030 will require sustained DAA uptake, at around 20,000/year

- Need for community awareness campaigns to sustain momentum

- Need for continued funding for community-based organisations

- Need for enhanced monitoring and evaluation

Modelling HCV Elimination in Australia

- **Annual number of people receiving HCV treatment**

<table>
<thead>
<tr>
<th>Treatment Scenario</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>Post-2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pessimistic</td>
<td>7,296</td>
<td>32,400</td>
<td>18,510</td>
<td>13,890</td>
<td>13,890</td>
</tr>
<tr>
<td>Intermediate</td>
<td>7,296</td>
<td>32,400</td>
<td>27,770</td>
<td>23,143</td>
<td>18,510</td>
</tr>
<tr>
<td>Optimistic</td>
<td>7,296</td>
<td>32,400</td>
<td>32,400</td>
<td>32,400</td>
<td>32,400</td>
</tr>
</tbody>
</table>

- Scenarios for each jurisdiction have same relative change in number treated over time starting from the 2016 PBS estimate

- **Status quo : Pre-DAA era scenario**
 - Number on treatment kept at 2015 levels

Kwon A, et al. AVHEC 2017
Estimated year Australia meets World Health Organization target compared to 2015 estimates

<table>
<thead>
<tr>
<th>Treatment scenario</th>
<th>WHO target</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% reduction in new chronic infections</td>
<td>2028</td>
</tr>
<tr>
<td>80% of people living with chronic HCV treated</td>
<td>2031</td>
</tr>
<tr>
<td>65% reduction in HCV-related deaths</td>
<td>2029</td>
</tr>
</tbody>
</table>

Scenario:
- Pre-DAA PBS listing
- Pessimistic scale-up
- Intermediate scale-up
- Optimistic scale-up
Key high-risk populations will need to be the focus, if HCV elimination to be achieved within next decade

High risk populations for HCV: Australia

- **Current PWID**
 - N=95,000
 - Chronic HCV 40%
 - N=38,000

- **MSM with HIV**
 - N=21,000
 - Chronic HCV 10%
 - N=2,100

- **Prisoners**
 - N=50,000
 - Chronic HCV 25%
 - N=12,500

- **PWID on OST**
 - N=48,000
 - Chronic HCV 50%
 - N=24,000

Larney S, IJDP 2017; Kirby Institute 2017
Monitoring and Evaluation of HCV Elimination

- **DAA scale-up**: Monitoring of DAA uptake, prescriber patterns, geographical coverage, treatment completion, and retreatment

- **Real-world DAA treatment outcomes**: REACH-C/OPERA-C

- **Liver Disease burden**: Data linkage (several jurisdictions) with hospitalisation (DC, HCC), cancer registry (HCC), death registry (liver disease and all-cause mortality), PBS (DAAs), and MBS (procedures).

- **Chronic HCV prevalence in high-risk populations**: ANSPS for current PWID (including DAA resistance monitoring); CEASE/Co-EC for HIV/HCV.

- **HCV transmission: HCV incidence**: ACCESS database; HCV notifications (acute, younger age); **HCV reinfection**: ANSPS, cohort studies in community and prison settings; ACCESS

Conclusions

- Australia is a leading country in relation to initial DAA roll-out, despite a delayed start

- Key populations for HCV elimination are being reached

- A broadened range of models and prescribers should provide sustained momentum, albeit at lower levels than 2016

- DAA outcomes are favourable, although post-treatment follow-up not optimal

- The next 2-3 years are absolutely crucial
Acknowledgements

UNSW Sydney
A/Prof. Jason Grebely
A/Prof. Gail Matthews
Prof. Andrew Lloyd
Dr. Behzad Hajarizadeh
Dr. Maryam Alavi
Dr. Tanya Applegate
Dr. Marianne Martinello
Dr. Jasmine Skurowski
Ms. Pip Marks
Dr. Richard Gray
Dr. Amy Known
Prof. Lisa Maher
Dr. Jenny Iversen
Prof. Carla Treloar

Collaborators
REACH-C network
Prof. Margaret Hellard (Australia)
Dr. Joe Doyle (Australia)
Prof. Alex Thompson (Australia)
A/Prof. Natasha Martin (USA)
Prof. Peter Vickerman (UK)
Prof. Matt Hickman (UK)
Dr. Homie Razavi (USA)
Ms. Tracy Swan (USA)
Dr. Philip Bruggmann (Switzerland)
Prof. Olav Dalgard (Norway)
Prof. Julie Bruneau (Canada)
Dr. Jordan Feld (Canada)