Genome-wide association study of HAM/TSP susceptibility in Brazil reveals both immune and neural genetic links

Tatiane Assone1,2,6, Wenjing Wang7, Fernanda de Toledo Gonçalves3, Victor Angelo Folgosi1,2, Gabriela da Silva Prates1,2, Arthur Maia Paiva1,2, Bernardo Galvão Castro-Filho4, Maisa Souza4, Marzia Puccione-Sohler4, Youko Nukui4, Simone Kashima Hadad4, Brazilian GWAS Network4, Augusto César Penalva de Oliveira*5; Isabelle Cleynen*7, Johan Van Weyenbergh*6, Jorge Casseb*1,2

1. Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, Medical School, University of São Paulo.
2. Institute of Tropical Medicine of São Paulo.
3. Laboratory of Immunohematology and Forensic Hematology, Department of Forensic Medicine, Medical Ethics, Social Medicine and Work, University of São Paulo Medical School, São Paulo, SP.
4. Brazilian GWAS Network: Fernanda Grassi; José Vidal; Flávia E. Dahy; Rosa M. M. Nascimento; Marcos Braz, Ana Rita; Jerusa Smid; Michel E. Haziot.
5. Institute of Infectious Diseases “Emilio Ribas” (IIER) de São Paulo, São Paulo, SP, Brasil.
6. Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven.

*Equal contribution

Background:
Despite decades of intensive research, HAM/TSP pathogenesis is poorly understood, but genetics have been shown to play a prominent role. Recent GWAS results from Japan have demonstrated a genetic link restricted to HLA class I and II polymorphisms, but replication in other HTLV endemic areas is lacking.

Methods:
From October 2017 to December 2019, we recruited a total of 911 people living with HTLV-1 (PLHTLV-1, 378 HAM/TSP and 533 asymptomatics) through a nation-wide effort in Brazil. Seropositivity for HTLV-1 was confirmed with Western Blot and nested PCR. Clinical status (asymptomatic or definite HAM/TSP) was defined in accordance with Castro-Costa published criteria. We used the Axiom Precision Medicine microarray (Affymetrix) comprising 902,527 SNPs. Following a rigorous QC check (excluding individuals with low quality DNA, missingness rate >5%, outlying heterozygosity, kinship; excluding SNPs deviating from HWE or MAF<0.001), we obtained a final dataset of 701 individuals (317 HAM/TSP, 372 asymptomatics).

Results:
A total of 42 SNPs in 20 genes were observed with p-values between 3x10^{-7} and 9x10^{-5}, most of which remained significant when correcting for proviral load. In agreement with the current paradigm of HAM/TSP pathogenesis, 15 were immune genes and/or expressed in leukocytes but not erythroid cells or platelets. However, no significant SNPs in HLA genes were observed. Notably, 6 genes (NGFR/CTNND2/USH2A/KCNQ3/SYT12/PDE7B) are enriched for GO term “synapse” and expressed in the central nervous system. Hinting at a molecular mechanism, most top SNPs were situated within or nearby ENCODE Candidate Cis-
Regulatory Elements, and within <100bp of a STAT1-binding motif, in agreement with previous epigenomic and transcriptomic findings in HAM/TSP.

Conclusion:
Non-HLA immune and neural genetic links are observed in a Brazilian GWAS study of HAM/TSP. STAT1-binding motifs in close vicinity to top SNPs represent a possible molecular mechanism supported by currently available multi-omics data in HAM/TSP.

Disclosure of Interest Statement:
The authors have no conflict of interest.