Sensory neuropathy affects 40% of HIV+ South Africans and 46% of risk can be predicted by one genotype plus demographic factors!

Jessica Gaff, Prinisha Pillay, Huguette Gaelle Ngassa Mbenda, Simon Laws, Catherine Cherry, Peter Kamerman and Patricia Price
jessica.gaff@postgrad.curtin.edu.au
HIV-SN can severely impair ability to work & quality of life!

Affects 60% of HIV+ Africans receiving stavudine in their treatment regimens

Symptoms may include:
• Burning or numbness
• Pins & needles
• Pain hypersensitivity
• Pain without painful stimulus
• Reduced ankle reflexes

There is no prevention, no cure & very few effective therapeutics!

Clinical pathology of HIV-SN

Neuronal loss in the dorsal root ganglion
Dieback degeneration of long axons
Loss of primary afferent terminals in the skin
Macrophage & cytokine infiltration of the DRG and skin

Mountford et al. 2018; Polydefkis et al. 2002; Shikuma et al. 2015
CaMKI is a candidate!

- **SIRT1**
 - Neuronal DNA repair
 - Axonal regeneration
 - Dendrite arborisation

- **AMPK**
 - Neuronal metabolism, proliferation, differentiation
 - Synapse connectivity
 - Neuronal survival

- **CAMKI**
 - Axonal elongation
 - Memory formation

- **CAMKIV**
 - Synapse formation
 - Dendrite arborisation
 - Excitatory synaptic strength
 - Memory formation

We can visualise CaMKK2 in biopsies using fluorescent microscopy!

Biopsies were donated from Indonesian individuals with and without HIV-SN

We were able to visualise CaMKK2
- Quantity
- Location
- Interactions
We can investigate the genetic signature of CAMKK2 in HIV-SN

CAMKK2 is located on chromosome 12 in a region of linkage disequilibrium

Polymorphisms in CAMKK2 may be co-inherited with polymorphisms in neighbouring genes

https://ldlink.nci.nih.gov/?tab=home
CAMKK2 is linked with neighbouring genes

Inflammation

Kawasaki et al. 2008; Tsuda et al. 2003; Lin et al. 2006; Ho et al. 2013
Participants were genotyped for polymorphisms in CAMKK2.

Demographic and clinical records collected. Assessed for HIV-SN using the BPNS.

Haplotypes derived using fastPHASE.

Bivariate & multivariate analyses.

75 HIV+ Africans Stavudine-free ART.

*BPNS = AIDS clinical trials group Brief Peripheral Neuropathy Screen
38% of patients developed HIV-SN

9 patients were diagnosed with HIV-SN prior to starting ART

20 patients developed HIV-SN between starting ART and follow-up at 6-8 months

Total = 29/75
Demographic and clinical variables are risk factors of HIV-SN

<table>
<thead>
<tr>
<th>Variable</th>
<th>+ve (n=29)</th>
<th>-ve (n=46)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>40 (24-60)</td>
<td>37 (19-58)</td>
<td>0.11</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>168 (147-179)</td>
<td>163 (135-186)</td>
<td>0.03</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>66 (45-112)</td>
<td>55 (35-110)</td>
<td>0.03</td>
</tr>
<tr>
<td>Current CD4 T-cells/µl</td>
<td>221 (22-685)</td>
<td>300 (8-832)</td>
<td>0.06</td>
</tr>
<tr>
<td>Nadir CD4 T-cells/µl</td>
<td>107 (4-575)</td>
<td>223 (8-771)</td>
<td>0.002</td>
</tr>
<tr>
<td>HIV RNA >500 copies/ml</td>
<td>21/29 (72%)</td>
<td>25/46 (54%)</td>
<td>0.12</td>
</tr>
<tr>
<td>History of Tuberculosis</td>
<td>6/28 (29%)</td>
<td>3/45 (7%)</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Demographic and clinical factors

Model p<0.0000, n=71, Pseudo $R^2=0.18$

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds Ratio</th>
<th>p Value</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Weight</td>
<td>1.04</td>
<td>0.029</td>
<td>1.00-1.08</td>
</tr>
<tr>
<td>Nadir CD4 T-cells</td>
<td>1.00</td>
<td>0.027</td>
<td>0.99-1.00</td>
</tr>
<tr>
<td>Prior Tuberculosis</td>
<td>4.26</td>
<td>0.077</td>
<td>0.90-20.03</td>
</tr>
</tbody>
</table>
CAMKK2 polymorphisms associate with HIV-SN

- P2X7R: rs118055*C, rs503720*G
- P2X4R: rs7961979*A, rs10849861*A, rs1653586*T
- CAMKK2: rs7975295*C, rs10849861*A, rs11065504*C
- ANAPC5: rs1560568*A, rs1132780*T, rs2089886*A

Significance Levels:
- p<0.20
- p<0.05
Optimal model considering demographics and polymorphisms

Model p<0.0000, n=69, Pseudo R²=0.46

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds Ratio</th>
<th>p Value</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Weight</td>
<td>1.07</td>
<td>0.031</td>
<td>1.01-1.13</td>
</tr>
<tr>
<td>Prior Tuberculosis</td>
<td>11.28</td>
<td>0.071</td>
<td>3.1-156.38</td>
</tr>
<tr>
<td>rs503720*G (P2X7R)</td>
<td>133.57</td>
<td>0.002</td>
<td>6.47-2757.01</td>
</tr>
<tr>
<td>rs10849861*A (CAMKK2)</td>
<td>5.99</td>
<td>0.050</td>
<td>1.0-35.87</td>
</tr>
<tr>
<td>rs1653586*T (CAMKK2)</td>
<td>0.02</td>
<td>0.006</td>
<td>0.001-0.31</td>
</tr>
<tr>
<td>rs11065504*C (CAMKK2)</td>
<td>6.68</td>
<td>0.088</td>
<td>0.76-58.92</td>
</tr>
</tbody>
</table>

Accounts for 46% of the risk of HIV-SN in this group!
7 haplotypes associate with HIV-SN

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>Freq</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2X4R-4</td>
<td>12%</td>
<td>0.14</td>
</tr>
<tr>
<td>CAMKK2-3</td>
<td>16%</td>
<td>0.13</td>
</tr>
<tr>
<td>ANAPC5 -8</td>
<td>9%</td>
<td>0.10</td>
</tr>
</tbody>
</table>

2x perfectly predict protection
Only in individuals **without** HIV-SN

2x perfectly predict risk
Only in individuals **with** HIV-SN
Optimal model considering demographics and haplotypes

Model $p=0.0005$, $n=71$, Pseudo $R^2=0.21$

<table>
<thead>
<tr>
<th>Variable</th>
<th>Odds Ratio</th>
<th>p Value</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Weight</td>
<td>1.04</td>
<td>0.032</td>
<td>1.00-1.08</td>
</tr>
<tr>
<td>Nadir CD4 T-cells</td>
<td>0.99</td>
<td>0.023</td>
<td>0.99-1.00</td>
</tr>
<tr>
<td>Prior Tuberculosis</td>
<td>11.28</td>
<td>0.126</td>
<td>0.71-16.60</td>
</tr>
<tr>
<td>$P2X4R$ Haplotype 4</td>
<td>133.57</td>
<td>0.132</td>
<td>0.18-1.69</td>
</tr>
</tbody>
</table>
Why are polymorphisms more strongly associated with HIV-SN than haplotypes?

Small cohort and genetic diversity – there may be rarer haplotypes which are not analysed in a small cohort

Linkage disequilibrium – the polymorphisms we identified may be linked with polymorphisms outside our panel

The polymorphisms may contribute directly?
Associating polymorphisms may play a direct role in HIV-SN

<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>Gene</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs503720</td>
<td>\textit{P2X7R}</td>
<td>Intronic</td>
</tr>
<tr>
<td>rs10849861</td>
<td>\textit{CAMKK2}</td>
<td>Intergenic</td>
</tr>
<tr>
<td>rs1653586</td>
<td>\textit{CAMKK2}</td>
<td>3’ UTR</td>
</tr>
<tr>
<td>rs11065504</td>
<td>\textit{CAMKK2}</td>
<td>Intronic</td>
</tr>
</tbody>
</table>
Study conclusions!

CAMKK2 polymorphisms are a strong marker of HIV-SN in Africans

The polymorphisms associated with HIV-SN are non-coding. So may play a role via the regulation of expression of *CaMKK2* or neighbouring genes.

This study implicates a role for *CAMKK2* in HIV-SN and further investigation is warranted!
Significance

If we can identify genetic markers we can offer customised HIV care for those at risk

Identifying the mechanisms leading to HIV-SN may allow the development of therapeutics to prevent, treat and cure HIV-SN
Acknowledgments

Thank you to our collaborators at Edith Cowan University for assistance with genotyping – Simon Laws, Lidija Milicic, Tenielle Porter, Madeline Peretti

Special thanks to the people living with HIV who have participated in this research

This research is supported by an Australian Government Research Training Program Scholarship & Graduate Women Western Australia Mary & Elsie Stevens Scholarship

Disclosures: There are no conflicts of interest for the authors to declare