Sex- and tissue-specific effects of binge levels of prenatal alcohol consumption on DNA methylation at birth: a potential link with FASD

Yuk Jing (Jane) Loke1,2, Evelyne Muggli2,3,5, Richard Saffery1,2, Joanne Ryan1,4, Sharon Lewis2,5, Elizabeth Elliott6,7, Jane Halliday2,5, and Jeffrey M. Craig1,2,8

1Molecular Immunity, Murdoch Children’s Research Institute, Victoria, Australia, 2Department of Paediatrics, University of Melbourne, Victoria, Australia, 3Victorian Infant Brain Studies, Murdoch Children’s Research Institute, Victoria, Australia, 4Biological Neuropsychiatry and Dementia Unit, School of Public Health, Monash University, Victoria, Australia, 5Reproductive Epidemiology, Murdoch Children’s Research Institute, Victoria, Australia 6Specialty of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, NSW, Australia, 7The Australian Paediatric Surveillance Unit, Sydney Children’s Hospital Network, NSW, Australia, 8The Institute of Mental and Physical Health and Clinical Translation, Deakin University, Victoria, Australia

Presenter’s email: jane.loke@mcri.edu.au

Issue: Binge level prenatal alcohol exposure (PAE) causes developmental abnormalities, which may be mediated in part by epigenetic mechanisms. In our well-characterised cohort, Asking QUestions about Alcohol in pregnancy (AQUA)[1], one in five women binge drank (defined as ≥ 5 standard drinks per occasion) prior to pregnancy recognition in trimester one[2], a period that is crucial for development of the nervous system[3]. DNA methylation (DNAm) of cytosine at the CpG (cytosine-phosphate-guanine) dinucleotide, the most studied epigenetic mark, has been implicated as a mediator of the relationship between early life environment and risk of chronic disorders[4, 5], including FASD[6-9]. Despite this, few studies have characterised the association of binge PAE with DNAm in offspring.

Methods: We address this gap by measuring the association between binge drinking and genome-wide DNAm profiles in a sex-specific manner in neonatal cheek cells (n=154) and placental samples (n=105). Genome-wide DNAm data was obtained using Infinium HumanMethylation450K array platform. Sum-of-rank approach, which combines ranks of effect sizes and p-values were used to identify differentially methylated regions (DMR).

Results: We observed two DMRs with associations between binge-level PAE and DNA methylation, specifically in female offspring. DNAm in one of the DMR-associated genes, ERICH1, has been shown by two independent studies to be impacted by FASD and binge PAE in humans. The other gene, SYBU, is likely to play a role in neurodevelopment, cognition, and behaviour.

Conclusions: Our findings warrant further replication and highlight a potential epigenetic link between binge PAE and FASD.

Disclosure of Interest Statement: This work was supported by the Australian National Health and Medical Research Council Grant #1011070; Senior Research Fellowship #1021252 (JH) and #1045161 (RS), and Practitioner Fellowship #1021480 (EE); the Medical Research Futures Fund Next Generation Fellowship #1135959 (EE), and the Victorian State Government’s Operational Infrastructure Support Program. The study has also received funding from the McCusker Charitable Trust to assist with the biospecimen collection at birth, Jack Brockhoff Foundation #3525 for genome-wide DNA methylation data generation of placenta samples, and Foundation for Children #2015-111 for genome-wide DNA methylation data generation of buccal samples.

References:


