
Drug & Alcohol Update Dr Shalini Arunogiri Monash University • Turning Point shalini.arunogiri@monash.edu

1 update prevalence & trends

Australians & Alcohol

Figure 3.1: Drinking frequency among people aged 14 and older, 2001–2019 (per cent)

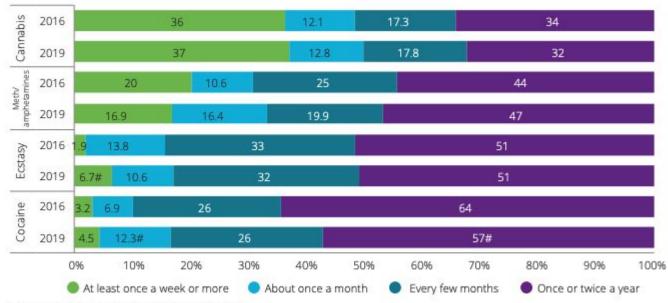
ÖP

More Australians are giving up alcohol; between 2016 and 2019, the proportion of people who were ex-drinkers increased from 7.6% to 8.9%.

45 40 35 30 25 20 15 10 5 0 2001 2004 2010 2016 2019 2007 2013 Less often than monthly Never a full glass of alcohol Ex-drinker Monthly

1 in 10 recent drinkers (9.9%) are likely to meet the criteria for alcohol dependence.

People in 40s and 50s most likely to exceed lifetime risky drinking guideline

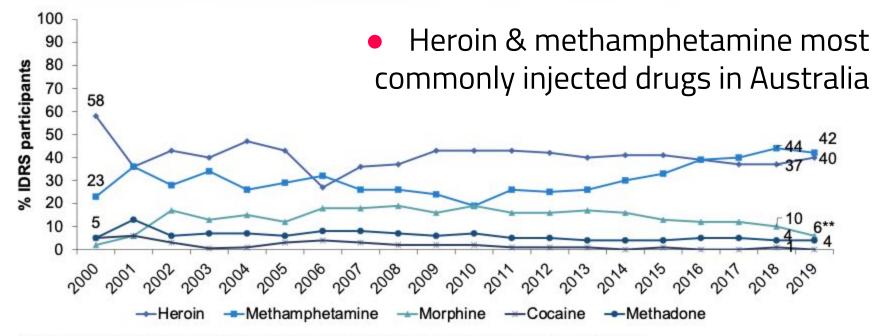

AIHW National Drug Strategy Household Survey 2019 4

Source: Table 3.2.

Statistically significant change between 2016 and 2019.

What are Australians using?

Figure 4.3: Frequency of illicit drug use, by specific illicit drug, people aged 14 and over, 2016 and 2019 (per cent)


Statistically significant change between 2016 and 2019.

Note: The 2016 estimate for at least weekly ecstasy use and at least once a week or more cocaine use has a relative standard error between 25% and 50%.

Source: Table 4.20.

AIHW National Drug Strategy Household Survey 2019 5

Figure 2: Drug injected most often in the past month, nationally, 2000-2019

Note. Substances listed in this figure are the primary endorsed; nominal percentages have endorsed other substances. *p<0.050; **p<0.010; ***p<0.001 for 2018 versus 2019

Drug and Alcohol Dependence 216 (2020) 108267

Injecting Drug Use Complications

19 (2.0)

Contents lists available at ScienceDirect
Drug and Alcohol Dependence

journal homepage: www.elsevier.com/locate/drugalcdep

Profile and correlates of injecting-related injuries and diseases among people who inject drugs in Australia

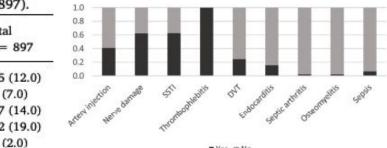

Samantha Colledge^{a,a}, Sarah Larney^b, Raimondo Bruno^c, Daisy Gibbs^a, Louisa Degenhardt^a, Wing See Yuen^a, Paul Dietze^d, Amy Peacock^a

Table 1

4+

Socio-demographic characteristics, injecting-related injuries and diseases (IRID) and risk behaviours of people who inject drugs (PWID) (N = 897).

High	IRID	group	n=52	
100	-	100	100	

■ Yes ≡ No

	Total
IRID n (%)	N = 897
Skin and soft tissue infection	105 (12.0)
Thrombophlebitis	65 (7.0)
Artery injection	127 (14.0)
Nerve damage	172 (19.0)
Deep-vein thrombosis Endocarditis	20 (2.0) 24 (3.0)
Sepsis/septicaemia	8 (1.0)
Osteomyelitis	6 (1.0)
Septic arthritis	4 (< 0.01)
Number of IRID	
0	588 (66.0)
1	166 (19.0)
2	89 (10.0)
3	35 (4.0)

Check for

LGB communities

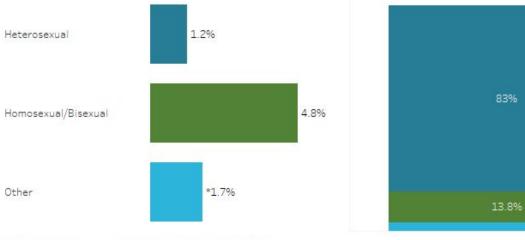
How does this compare to heterosexual communities?

Since 2010, the proportions of LGB people who engage in substance use has been consistently higher than their heterosexual counterparts. Compared to heterosexual people, in 2019, LGB people were:

- 1.5 times as likely to smoke daily
- 1.5 times as likely to exceed the lifetime risk guideline to reduce the harm from drinking alcohol
- 9.0 times as likely to have used inhalants in the previous 12 months
- 3.9 times as likely to have used meth/amphetamines in the previous 12 months
- 2.6 times as likely to have used ecstasy in the previous 12 months.

ACON; AIHW National Drug Strategy Household Survey 2019 8

National Drug Strategy Household Survey 2019

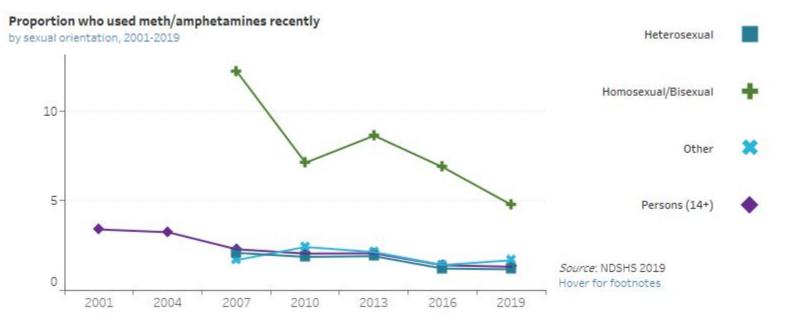

Characteristic Sexual orientation Drug/Behaviour 12. Illicit drug use - Meth/amphetamines Unit Crude per cent

How to interpret these results:

4.8% of people who are homosexual or bisexual had used meth/amphetamines (for non-medical purposes) in the previous 12 months. However, of all the people who had used meth/amphetamines (for non-medical purposes) in the previous 12 months, 13.8% of them were people who are homosexual or bisexual.

Proportion who used meth/amphetamines recently

by sexual orientation (2019)

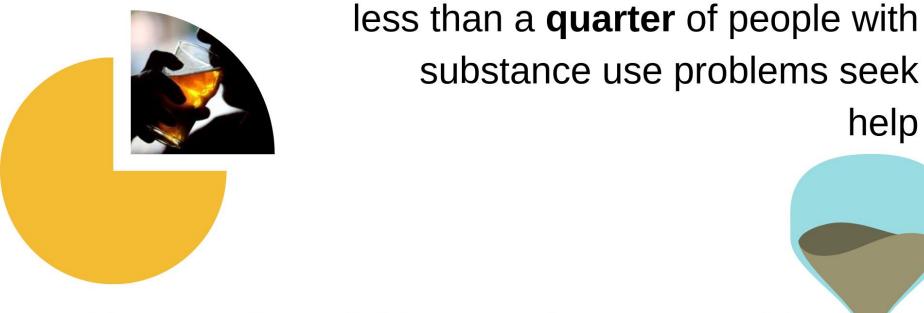

Only show trends where 2019 is significantly different to: No comparison

Breakdown of sexual orientation

people who used meth/amphetamines recently (2019)

AIHW National Drug Strategy Household Survey 2019 9

Methamphetamine Use


AIHW National Drug Strategy Household Survey 2019 10

overview assessment & management

stigma

Single biggest barrier to engagement in treatment

Forging trust and rapport is *critical* to the next step in treatment journey

... with a median of **18 years** between problem onset and help-seeking

Teesson M 2010 Addiction Chapman C et al 2015 Drug and Alcohol Dependence Wang et al 2007 World Psychiatry

History, Examination, Investigations

- Frequency (how often)
- Amount (less reliable than frequency as marker of dependence)
- Duration (years versus months versus days)
- Route (injecting, smoking, oral etc. to understand risks)
- Co-use (important for risks, withdrawal)
- Physical & mental health risks & comorbidities
 - Including overdose and severity
- Physical & mental health risks & comorbidities
- Stage of change & goal (reduction versus abstinence)

Most importantly - attitude, rapport, collaboration

Ex, Ix: BBV and STI screen

Aim Intervention Appropriately

Use without Use Disorder	Use Disorder (mild-moderate)	Use Disorder (severe)
 Harm reduction Incl. injecting use And overdose risk 	 Reduce or cease? Withdrawal & Post-Withdrawal Support Medications- craving, relapse Counselling Peer Support 	 Mental Health & Physical Health Comorbidities Withdrawal & Post-Withdrawal Support Medications- craving, relapse Peer Support

?Rehab

Longer term treatment Staying stopped

Counselling, Peer Support, Rehab

- Mainstay of treatment---> AOD sector referral
- CBT, Relapse Prevention
- Consider therapist fit, rapport
 - LGBTIQ services e.g. Q Life, Switchboard, Twenty10 (12-25yo)
- Peer support important role esp. minority cultures
- Rehab
 - Multiple attempts at detox & counselling
 - Environmental factors perpetuating presentation

Consider interactions with ARVs

hiv-druginteractions.org University of Liverpool

Antiretrovirals and Recreational Drugs

Charts revised October 2019. Full information available at www.hiv-druginteractions.org

For personal use only. Not for distribution. For personal use only. Not for distribution. For personal use only. Not for distribution. For personal use only. Not for distribution.

	ATV/c	ATV/r	DRV/c	DRV/r	LPV/r	DOR	EFV	ETV	NVP	RPV	MVC	BIC/	DTG	EVG/c/	EVG/c/	RAL	ABC	FTC	F/TAF	TDF	ZDV
Othersteade		75 12					10 0		_			F/TAF		F/TAF	F/TDF	10 0		or 3TC			L
Stimulants	1°¥					L eventil	+ 0			-	Market							1	Concerne and	Descent	1
Cocaine		1.4	1	T	1.4	++	Τ-	1	1	++♥	**		**		1	÷	69	++	+	**	
Ecstasy (MDMA)	1 °	†=	1°	1 *	1 ^r	\leftrightarrow	**	**	**	++	**	\leftrightarrow	**	1°	↑°.	\leftrightarrow	**	++	\leftrightarrow	\leftrightarrow	\leftrightarrow
Mephedrone	14	1ª	† ª	1ª	1ª	↔	\leftrightarrow		++	++	++	\leftrightarrow	**	1ª	1 d	\leftrightarrow		++	\leftrightarrow	\leftrightarrow	
Methamphetamine	1	T	1	1	Ť	\leftrightarrow	\leftrightarrow	**	**	++	++	\leftrightarrow	**	1	1	\leftrightarrow	**		++	\leftrightarrow	
Poppers (Amyl nitrate)	+	++	÷	\leftrightarrow	1	1	+	\leftrightarrow	++	1	÷	+	+	1	1	÷	+	+	1	ŧ	++
Depressants		(1) (A)				22. 22				an 10							-	4			
Alcohol	**	++	\leftrightarrow		++*	ŧ	**			++	++	++	++	++	\leftrightarrow	÷	1 41%	++	++	\leftrightarrow	++
Alprazolam	1	1	1	1 ¹	1	ţ	4	1	1	÷	++	+	+	1	1	÷	++		+	¢	\leftrightarrow
Codeine	1.	19	† ^a	t.a	18	ţ	† a	1 4	1.0	‡	ŧ	t	+	1.8	†*	÷	1	++	ţ	÷	+
Diazepam	1	t	1	1	Ť	ŧ	1	1	1	++	++	+	+	1	1	÷		++	+	ŧ	
GHB (gamma hydroxybutyrate)	1 ⁿ	1 h	† ⁿ	1*	1.8	+	++			++	**			1*	† h	++		++	**	+	**
Heroin (Diamorphine)	\leftrightarrow^1	41		11	\pm^{i}	ţ	1	\leftrightarrow^1		**	+	+	+	\leftrightarrow ¹	\leftrightarrow^1	+			+	÷	++
Hydrocodone	1	1	1	1	1	1	4	4	1	++	++	+		1	1	÷	++	++	+	¢	++
Hydromorphone	++	1	++	4	1	÷	1	++	++	**	++	+				↔	++	++	++	+	++
Ketamine	1	1	1	1	1	ţ	4	4	1	++	++	+	++	1	1	↔	++	++	++	\leftrightarrow	++
Methadone	++ ♥		1	↓16%	153% 🕶	↓5% ↓26%	↓52%	16%	1~50%	L16%¥	÷	÷	↓ 2 %	†7%	<u>†</u> 7%	÷	1	++	+	↑~5%	ſ
Midazolam (oral)	11	11	11	T	41	↓18%	1.	+	1	+	+	1	++	11	11	++	+	++	1	++	+
Morphine	++1	- 1ª	\leftrightarrow^{1}	11	41		1	++1	++	++		**	**	++ 1	\leftrightarrow^1				++		**
Oxycodone	1	1	1	t	†160%		1	+	1	++			**	1	1	++	**		++	**	++
Pethidine (Meperidine)	Ť	↓ m	Ť	1"	1	ţ	1	1 **	1"	**	++	÷	÷	Ť	1	↔	++	++	+	÷	++
Temazepam	++	++			÷	ŧ	++	**	.++	++	++	++			**	÷	**	++	÷	ţ	
Triazolam	11	11	11	t!	1	ŧ	-1ª)	4	4		++	+		11	11	↔	**		÷	÷	
Hallucinogens	-						101 C		10 V	a. a					aa	<u> </u>		· ·		N	()
Cannabis	†"₩	t"₽	† "	†*	†*	++	†°	1°			++	••	++	†"	†"	\leftrightarrow	++		+	\leftrightarrow	++
LSD (Lysergic acid diethylamide)	1 P	† P	1 P	1*	1 P	t	1	1	1	++	**	++	++	†₽	1 ^p	÷	++	++	••	÷	++
Phencyclidine (PCP, angel dust)	15	19	ţ٩	14	† 9	t	4	4	4	ŧ	ŧ	\$	÷	† s	ţ a	÷			÷	¢	÷

Consider interactions with ARVs

WHO HIV/AIDS Treatment and Care for Injecting Drug Users

https://www.euro.who.int/__data/assets/pdf_file/0009/78138/E90

840_Chapter_5.pdf

TABLE 5. INTER	ACTIONS OF ILLICIT DRUGS	AND ARVS		
Drug	Primary metabolism site	Interaction	Recommendation	
Amphetamines	CYP2D6	RTV \uparrow levels \Rightarrow toxicity.	Do not prescribe RTV or lopinavir/ritonavir even in low doses if patients report amphetamine use.	
Barbiturates	CYP3A4	Barbiturates such as pheno- barbital are potent inducers of CYP3A4.	Consider avoiding concurrent administration of other potent inducers (e.g. EFV and NVP) in patients misusing barbitu- rates.	
Benzodiazepines	CYP3A4 involved with midazolam, triazolam, al- prazolam & flunitrazepam	$PIs \Rightarrow$ over-sedation. $NVP \Rightarrow$ withdrawals.	Avoid concurrent use of alprazolam, midazolam and triazolam with all PIs and EFV.	
Cocaine	CYP3A4	PIs and EFV ↑ levels ⇒ overdose. NVP⇒hepatotoxic me- tabolite.	Monitor for increased hepato- toxicity.	
Codeine	UGT 2B7	PIs ↑ or ↓ metabolism ⇒ possible overdose ⇒ loss of analgesia.	Interactions with ARVs are similar to those described for methadone. Thus, NNRTIs and some PIs may result in opioid withdrawal and loss of analge- sia. Should be monitored.	
Heroin	Plasma	NFV, RTV \Rightarrow withdrawal.	No clinically significant interactions reported however interactions with ARVs are similar to those described for methadone. Thus, NNRTIs and some PIs may result in opioid withdrawal and loss of analgesia and clinicians should monitor.	
MDMA (eestasy) GHB (gamma-hydroxy- butyrate)	CYP2D6	RTV \uparrow levels \Rightarrow toxicity.	Do not prescribe PIs even in low doses if patients report MDMA or GHB use. MDMA-ritonavir interactions can be fatal.	
Morphine	UGT 2B7	NFV, RTV \Rightarrow withdrawals, loss of analgesia.	Interactions with ARVs are similar to those described for methadone. Thus, NNRTIs and some PIs may result in opioid withdrawal and loss of analgesia. Clinicians should monitor.	
Phencyclidine	CYP3A4	PIs, $EFV \Rightarrow$ toxicity.	Monitor for phencyclidine toxicity.	
THC	CYP3A4	PIs may ↑ concentration. NNRTIs may ↓ concentra- tion.	No clinically significant inter- actions reported.	

alcohol

Foundation

- No level of alcohol consumption improves health (Burton, 2018, Lancet)
- Treatment is effective
 - Meta-analyses suggest abstinence rates up to 43% (Monahan & Finney, Addiction 1996)
- Alcoholic liver disease is the most common serious medical complication
 - Almost 50% of worldwide liver disease burden is attributable to alcohol
 - Risk is highest in: overweight & obese individuals, women, those with family history of ALD, comorbid Hep B and C

Connor, Haber & Hall (2016) Alcohol Use Disorders. Lancet

Foundation

- In routine practice FBE, LFTs ok but GGT can detect only about 1in 5 cases of heavy drinking
- In monitoring CDT

	Monitor abstinence	ldentify high-risk drinking	Time to normalise	Usefulness for detection of high-risk drinking		
				Sensitivity	Specificity	
Routinely available tests						
Alcohol concentration in breath or blood	Yes	No	Hours	Low	High	
γ-glutamyl transferase	No	Yes	4 weeks	Low	Moderate	
Mean corpuscular volume of red blood cells	No	Yes	3 months	Low	Moderate	
Aspartate aminotransferase	No	Yes	4 weeks	Low	Low	
Tests done in specialised laboratories*						
Carbohydrate-deficient transferrin	No	Yes	4 weeks	Moderate	High	
Ethyl glucuronide and ethyl sulphate	Yes	No	2 days	High	High	
Phosphatidyl ethanol	No	Yes	4 weeks	High	High	
May be costly.						

Connor, Haber & Hall (2016) Alcohol Use Disorders. Lancet

Aim Intervention Appropriately

ι	Jse without Use Disorder	(r	Use Disorder mild-moderate)		Use Disorder (severe)	
	 AUDIT 0-10 Brief intervention education, self-help) • 	AUDIT 8-20 Counselling Monitoring +/- Medication +/- Withdrawal support Peer Support & Self Help	• •	AUDIT 20+ Specialist Ax Withdrawal support Post-withdrawal support (>90% relapse w detox alone)	
AUDIT	self check			•	Medication	

www.auditscreen.org

Peer Support

Rehab

•

Update on Treatments

	Proposed mechanism	Approved treatment goal	Typical dose*	Adverse reactions	Level of evidence‡
Naltrexone (oral)	µ-opioid antagonist; blocks endogenous opioid rewards and reduces alcohol-cue-conditioned reinforcement signals	Abstinence	50–100 mg per day orally	Nausea, vomiting, headache, dizziness, fatigue, anxiety, insomnia, tiredness, and joint or muscle pain	High ^{105,110}
Naltrexone (intramuscular injection)	μ-opioid antagonist; blocks endogenous opioid rewards and reduces alcohol-cue-conditioned reinforcement signals	Abstinence	380 mg gluteal intramuscular injection monthly	Same as above, in addition to risk of site infection or reactions	Moderate; reduces heavy drinking days but does not promote abstinence ¹⁰⁹
Acamprosate	Uncertain; glutamate system modulator. Normalises dysregulation of N-methyl-D- aspartate-mediated glutamergic neurotransmission in chronic alcohol use and might act through calcium	Abstinence	666 mg three times per day orally; reduce dose if weight <65 kg or if renal function is impaired	Gastrointestinal upset, especially diarrhoea, pruritus, rash, and altered libido	High ^{wattan}
Disulfiram	Aldehyde dehydrogenase inhibitor; alcohol use results in acetaldehyde accumulation, leading to nausea, flushing, sweating, and tachycardia	Abstinence	200 mg per day orally; dose may be reduced or increased as needed	Drowsiness, metallic taste, skin rash, headache, peripheral neuropathy, neuritis, polyneuritis, optic neuritis, mood change, impotence, seizure, and hepatotoxicity	Mixed for supervised dosing; low for unsupervised dosing ¹⁰⁵¹¹³¹¹⁴

- Emerging evidence base
 - Baclofen- renally excreted; sedative & risks in toxicity or abrupt cessation
 - Topiramate

Connor, Haber & Hall (2016) Alcohol Use Disorders. Lancet

heroin & other opioids

Foundation

- Heroin use in general population <0.1% (past 12-month)
- Prescription opioids/pharmaceuticals contributing to rising proportion of people seeking AOD treatment, people prescribed opioid pharmacotherapies, people experiencing overdose
- Opioid pharmacotherapy (methadone, buprenorphine) has >30 years established evidence base for reducing mortality & morbidity
 - Reduces overdose risk (through maintenance of tolerance)
 - Reduces risks associated with injecting use

Australian Institute of Health and Welfare. Non-medical use of pharmaceuticals: trends, harms and treatment, 2006-07 to 2015-16. In: Welfare, ed. Canberra 2017.

Aim Intervention Appropriately

Use without Use Disorder	Use Disorder (mild-moderate)	Use Disorder (severe)
<section-header><section-header><list-item><list-item></list-item></list-item></section-header></section-header>	 Pharmacotherapy (methadone, buprenorphine) Withdrawal & Post-Withdrawal Support Counselling Peer Support Naloxone 	 Pharmacotherapy Withdrawal & Post-Withdrawal Support Peer Support ?Rehab Naloxone

Update on Treatments

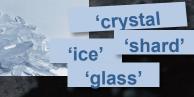
- Long acting injectable buprenorphine
 - Buvidal [®] and Sublocade [®]
 - Available from Oct 2019 and Apr 2020
 - Weekly and monthly
 - Convenience, less cost to consumer (S100)
- Patient information
 - https://www.nada.org.au/wp-content/uploads/ 2019/10/Depot-Bupe-Infosheet-V4-031019.pdf

PBS TO COVER MEDICATION FOR OPIOID ADDICTION BUVIDAL WILL BE LISTED ON THE PBS FROM NEXT MONTH DVIDAL WILL BE LISTED ON THE PBS FROM NEXT MONTH NEWS.com.au) HAPPENING NOW

ADDICTION	SSA
RESEARCH REPORT	doi:10.1111/add.14636

Long-term safety of a weekly and monthly subcutaneous buprenorphine depot (CAM2038) in the treatment of adult out-patients with opioid use disorder

Michael Frost¹, Genie L. Bailey^{2,3}, Nicholas Lintzeris^{4,5}, John Strang⁶, Adrian Dunlog^{7,8}, Edward Y. Nunes⁹, Jakob Billeskov Jansen¹⁰, Lars Chemnitz Frey¹¹, Bernd Weber¹², Paul Haber^{13,14}, Sonia Oosman¹⁵, Sonnie Kim¹⁵ ⁽²⁾ & Fredrik Tiberg¹⁶


methamphetamine

Methamphetamine

Methamphetamine is a **potent synthetic stimulant drug**. It is part of a larger family of drugs known as **amphetamine-type stimulants (ATS)**, which also includes amphetamines and ecstasy.

Amphetamine was common in Australia until the late 1990s when it was supplanted by methamphetamine. In Australia methamphetamine is sold on the street under various names:

'base'

Methamphetamine is made in Australia and imported from other countries. It is manufactured in **clandestine laboratories** from chemicals, including those used in cold and flu medications (e.g. pseudoephedrine).

Powder and Crystal

Speed

- Powder form
- often smoked, snorted
- less pure ullet

lce

- Crystal formoften smoked, injected
- usually purer

Table 1 Clinical pharmacokinetics of methamphetamine.

Route	Dose	Bioavailability	C_{max} (µg/l)	T _{max} (minutes)	$T_{1/2}$ (hour)	Time to peak effect	
Intravenous	30 mg	100%	108 ± 22 (64-164)	6 ± 11^{b}	9.1 ± 0.8 (8-16)	<15 minutes ^a	[33,152,153]
Smoking	30 mg	$67\%^{d}$; 90 ± 10% ^c	47 ± 6	150 ± 30	12 ± 1 (8–17)	18 ± 2 minutes	[11,30]
Oral	30 mg ^e	67 ± 3%	94.1 (62-291)	216 (180-300)	9.1 (3-17)	180 minutes ^a	[154]
Intra- nasal	50 mg	79%	113 ± 8	169 ± 8	11 ± 1 hours ^a	≤15 minutes ^a	[32]

C_{max}: peak plasma methamphetamine concentration; T_{max}: time to reach peak plasma methamphetamine concentration; T₁₁₂: methamphetamine plasma half-life. Data are presented as mean ± standard error and/or (range) where available. ³Peak effect estimated from published plots of subjective effect versus time. ⁶Geometric mean, determined by non-compartmental analysis; may be overestimated due to sampling interval. ⁶Based on the inhaled dose, does not include drug residue remaining on the pipe [11]. ⁶Data from Harris *et al.* 2003 [32]. ⁶Administered dose was 30 mg/70 kg.

Table 2 Detection times for methamphetamine in plasma, saliva and urine.

Matrix	Dose	LLOQ/cut-off	Typical detection time (single dose)	Maximum detection time (repeated dosing)		
Plasma	10 mg intravenous	1 µg/l	36-48 hours	Not reported	[32]	
Plasma	35 mg ^a intravenous	1 µg/l	36-48 hours	Not reported	[31]	
Plasma	10 mg oral, slow-release	2.5 µg/l	24 hours	Not reported	[155]	
Oral fluid	10 mg oral, slow-release	2.5 µg/l	24 hours	3 days	[155]	
Urine	10 mg oral, slow-release	2.5 µg/l	87 hours	7 days	[27]	
Urine	22 mg smoking	300 µg/l	60 hours	Not reported	[11,156]	

Adapted from Verstraete et al. 2004 [156]. LLOQ: lower limit of quantification. "The administered dose was 0.5 mg/kg, equivalent to 35 mg/70 kg,

- Peak effect 15-20 mins (IV or smoking)
- T 1/2 between 8-17 hours
- Detected for approx. 3 days in urine

Cruickshank and Dyer A review of the clinical pharmacology of methamphetamine Addiction 2009

Methamphetamine Prevalence, burden

- Population level past-year use is low, and has decreased
- But burden has increased
 - Among people who use regularly

Hospitalisations

7.6% of all drug-related hospitalisations in2017-18(3.1% in 2013-2014)

- Contributes to 21% of burden of all illicit drugs
- 42% who used MA in the past year self-reported mental illness

In 2016, over the last 12 months, people aged 14+ used:

Ecstasy 2.2% Cocaine 2.5% Meth/amphetamine 1.4%^[4]

Consumption of meth/amphetamine decreased among the general population

2.1% in 2013 1.4% in 2016.^[4] Annually across Australia, over 90,000 emergency department visits and 50,000 psychiatric inpatient admissions are thought to relate to methamphetamine use

> McKetin et al 2018

MA Use Disorder

- Tolerance, withdrawal symptoms
 - Last time you stopped- when?
 For how long?
 What happened?
- Frequency is a good marker
 E.g. weekly or more for MA

Medication Approaches Methamphetamine

No medication for use disorder

- Stimulant agonists may promote reduction in use in *some* individuals- but does not consistently promote retention, abstinence
- In reviews that include cocaine use disorder, agonist meds appear more effective for CUD than MUD
- Dose matters (tolerance)
- Retention difficult

	DI	\mathbf{C}	
AD			

Pharmacotherapy for methamphetamine/amphetamine use disorder—a systematic review and meta-analysis

Brian Chan^{1,2}, Michele Freeman³, Karli Kondo³, Chelsea Ayers³, Jessica Montgomery³, Robin Paynter³ & Devan Kansagara^{1,3,4}

Psychopharmacology (2020) 237:2233–2255 https://doi.org/10.1007/s00213-020-05563-3

REVIEW

REVIEW

Prescription psychostimulants for the treatment of stimulant use disorder: a systematic review and meta-analysis

Vitor S. Tardelli¹ · Adam Bisaga² · Felipe B. Arcadepani¹ · Gilberto Gerra³ · Frances R. Levin² · Thiago M. Fidalgo¹

Table 3 Brief summary of findings.

	Abstinence	Use	Retention	Harms
All Antidepressants	**	ø	**	*
Aminoketone: Bupropion	*	*	**	ø
Atypical Antidepressant: Mirtazapine	NA	ø	ø	ø
SSRI: Sertraline	ø	NA	ø	NA
Atypical Antipsychotics: Aripiprazole	ø	*	ø	ø
Psychostimulants and Other Medications for ADHD				
All Psychostimulants: Modafinil, Dexamphetamine, Methylphenidate	*	ø	*	NA
Methylphenidate	NA	*	*	NA
Atomoxetine	NA	ø	ø	ø
All Anticonvulsant and Muscle Relaxants: Baclofen, Gabapentin, Topiramate	ø	ø	ø	ø
Topiramate	NA	*	*	*
Medications used for other substance use disorders				
Naltrexone	ø	*	*	**
Varenicline	NA	ø	ø	ø

Shading represents the direction of effect:

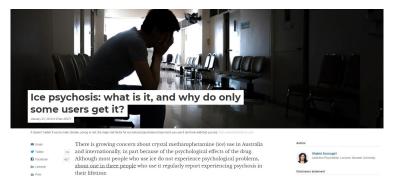
Unclear	
No difference	
Evidence of benefit	
Favors placebo	

Symbols represent the strength of the evidence:

NA No evidence or not applicable

Ø Insufficient

★ Low


★★ Moderate

tt High

Chan et al 2019

Addiction

Psychosis

MA Psychosis

- Psychotic symptoms experienced by up to ¼ of people who use MA regularly
- Persistent symptoms associated with risk, including risk of chronic psychotic illness
- MA use itself is the strongest risk factor, with frequency of use predicting risk of psychotic symptoms
 - Reducing or ceasing MA use will treat this in the majority of people
- Indicator for specialist referral +/- early intervention

Update on Treatment Resources

- Methamphetamine Treatment Guidelines
 www.turningpoint.org.au
- S-Check App <u>https://scheckapp.org.au/</u>
- Stimulant Clinic (St Vincent's, Sydney)
- Cracks in the Ice https://cracksintheice.org.au/

Crystal Methamphetamine Trusted, evidence-based information for the community

Turning Point

GUIDELINES

GHB

GHB

- Oral ingestion
- Onset ± 15- 20mins
 Effects up to 4 hours
 Half-life 20-20 mins
- Usually multiple dosing per session
- Often co-ingested with other substances
 - Alcohol, MA

The assessment and management of gamma hydroxybutyrate use in general practice

Vicky Phan, Shalini Arunogiri, Dan I Lubman GAMMA HYDROXYBUTYRATE (GHB) is an illicit drug that has a depressant effect In Australia, GHB is commonly used within the dance and party scene, and by

> Phan et al AJGP 2020

GHB Prevalence, burden

- Harms have increased despite low use overall
- 147% increase over 7 yrs
- Co-use with MA

RESEARCH REPORT

doi:10.1111/add.14848

Trends in gamma-hydroxybutyrate-related harms based on ambulance attendances from 2012 to 2018 in Victoria, Australia

Shalini Arunogiri^{1,2}, Foruhar Moayeri², Rose Crossin^{1,2}, Jessica J. Killian^{1,2}, Karen Smith^{3,4,5}, Debbie Scott^{1,2}, & Dan I. Lubman^{1,2}

Monash Addiction Research Centre and Eastern Health Clinical School, Monash University, Box Hill, VIC, Australia,¹ Turning Point, Eastern Health, Richmond, VIC, Australia,² Ambulance Victoria, Doncaster, VIC, Australia,³ Department of Community Emergency Health and Paramedic Practice, Monash University, Frankston, VIC, Australia,⁴ and Department of Epidemiology and Preventive Medicine, Monash University, Richmond, VIC, Australia,⁵

ABSTRACT

Background and aims Although the prevalence of gamma-hydroxybutyrate (GHB) use is relatively low globally, harms related to the drug appear to be increasing. Few existing studies present reliable, representative, population-level data on GHB-related harms. The aim of this study was to investigate trends in acute GHB-related harms within an ambulance database in Australia. Design, setting and participants Cross-sectional, retrospective analysis of data on all GHB-related ambulance attendances in the state of Victoria, Australia during a 7-year period (January 2012–December 2018) Measurements Presentations were characterized based on patient demographics, transport to hospital, co-occurring substance use (i.e. GHB only, alcohol, methamphetamine, heroin, benzodiazepine and cannabis) and clinical presentation (e.g. symptoms of anxiety, psychosis, depression). Findings There were 5866 GHB-related ambulance attendances between 2012 and 2018, with the prevalence rate increasing from 8.8 per 100 000 population in 2012 to a maximum of 21.7 per 100 000 population in 2017. Methamphetamine [odds ratio (OR) = 6.23, P < 0.001] and benzodiazepine-related (OR = 1.43, P < 0.001) co-occurrences; ages between 18-29 (OR = 6.58, P < 0.001) and 30-39 years (OR = 2.02, P < 0.001); and male gender (OR = 1.23, P < 0.001) were significant predictors of GHB-related attendances. Conclusions There has been a 147% increase in the prevalence of GHB-related ambulance attendances in Victoria, Australia between 2012 and 2019, largely attributable to a growth in the proportions of people using gamma-hydroxybutyrate alone or concurrently with methamphetamine.

Overdose

GHB overdose

- Up to 1 in 5 people with past year use report OD/ blackout (GDS)
- Narrow window
- Re-dosing too early
- Amnestic effects

 Highlighting just how easy it is to overdose on GHB, 1 in 4 women and 1 in 6 men report passing out on GHB in the last 12 months. 10% of people using once or twice report passing out, which increases to 1 in 3 who report using it more often. Women are also seeking EMT twice as frequently than men (4% v 2%).

> https://www.globaldrugsurvey.com/gds-2018/ghb-1-in-5-pass-out-e ach-year-women-are-more-at-risk-than-men/

GHB withdrawal

Lessons from practice

Severe GHB withdrawal delirium managed with dexmedetomidine

- In 'heavy' users can be life threatening
- Due to short half-life, can present within hours of last dose
- Markers of high risk/ severe syndrome
 - Time between doses (high frequency)
 - >6 x /day
 - >4mL/ day daily

Tay et al MJA 2016

6

M. McDonough et al. / Drug and Alcohol Dependence 75 (2004) 3-9

Table 3

Comparison of pattern of GHB use between cases presenting with and without withdrawal delirium

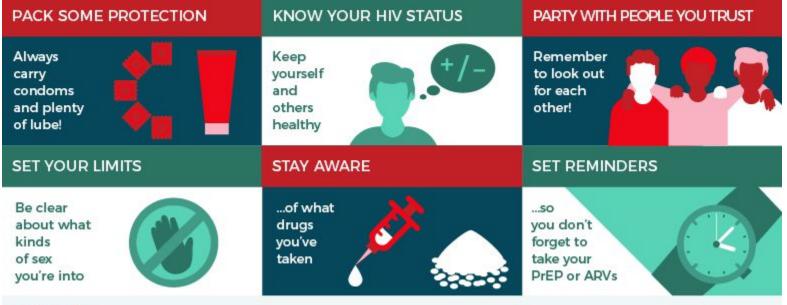
	Withdrawal delirium		Pa
	Absent $(N = 18)$	Present $(N = 20)$	
Form of GHB taken, n (%)			
GHB	13 (72%)	15 (75%)	
GBL	5 (28%)	5 (25%)	
Time between doses (h), mean (range)	7.0 (1-24)	2.3 (0.5-8)	0.03 ^{b,*}
Estimated daily dose (g), mean (S.D.)			
GHB	39 (23)	58 (23)	0.09
GBL	10 (10)	31 (15-60)	0.21 ^b
Years of use, mean (S.D.)	1.1 (0.8)	1.5 (1.0)	0.24
Duration of withdrawal (days), mean (S.D.)	8 (4)	10 (4)	0.08
Duration since last dose at presentation (h), mean (range)	45 (2-200)	46 (1-140)	0.54 ^b
Presence of another psychoactive drug at presentation, n (%)	6 (46%)	4 (25%)	0.27

^a Student's *t*-test for continuous variables; χ^2 or Fisher's exact test for categorical variables

^b Data skewed, so In transformed.

* Significant at the 0.05 level.

McDonough et al


Clinical features and presentation of GHB withdrawal: a review Drug and Alcohol Dependence 2004

Harm reduction & Resources

Chemsex/ Party and Play (PnP)

- Use of drugs to facilitate or enhance sexual activity & pleasure
- **Minority** of MSM engage in chemsex
- For arousal, libido, vasodilation, disinhibition/relaxation
- Commonly used drugs include:
 - GHB
 - Methamphetamine
 - Amyl nitrite (poppers)

SAFER WAYS TO PARTY AND PLAY...

AVERT.org

Harm Reduction & Chemsex

KNOW YOUR CHEMSEX SUBSTANCES...

STAY SAFE WHEN TAKING GHB. METH OR **CRYSTAL METH**

AVERT.org

GHB		
LOOKS LIKE	FEELS LIKE	
	𝗭 YOU'RE RELAXED	
	YOU'RE WARM	
	YOU'RE AROUSED	
BE AWARE THAT	BE CAREFUL TO	
Dosage is difficult – It's a fine line between fun and	Avoid mixing with depressants like alcohol or ketamine	

- Avoid mixing with depressants like alcohol or ketamine
- · Use a pipette to measure your dosage carefully
- Mix with a non-alcoholic drink and never drink straight from the bottle
- · Make sure a friend is around in case you fall unconscious

Source: Pavilions 'Chemsex drugs'

CRYSTAL METH

LOOKS LIKE

BE AWARE THAT...

- Crystal Meth interacts poorly with some HIV medicines and anti-depressants, and when they are mixed it can result in heart attacks or strokes
- It's easy to forget to sleep or eat when using which can leave you feeling exhausted and paranoid

FEELS LIKE

- X. YOU'RE WIDE AWAKE
- C/ YOU'RE IMPULSIVE
- YOU'RE AROUSED X

BE CAREFUL TO ...

 Avoid using if you are taking HIV medication (ARVs) or anti-depressants

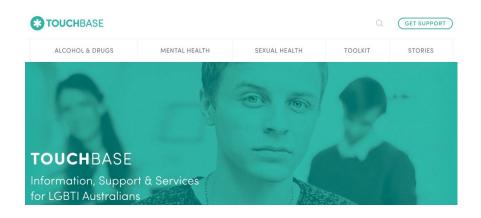
feeling foggy

- Take regular breaks between use
- Always use clean needles if slamming
- Dispose of injecting equipment safely

AVERT.org

The wrong dosage can result in loss of consciousness

and an increased vulnerability to sexual assault


Resources

Pivot Point pivotpoint.org.au

 Online resource for LGBTIQ community on substance use by ACON

Touch Base touchbase.org.au Thorne Harbour Health (prev VAC)

Avert <u>www.avert.org</u>

How Hard www.howhard.com.au

Resources

Peer support & Counselling

- ACON (NSW)
- Thorne Harbour Health (VIC)
- QuIHN (QLD)
- Switchboard (VIC)

SMART RECOVERY AUSTRALIA

Online SMART Recovery meetings

Take control of your addictive behaviours

Resources

Turning Point Withdrawal Guidelines (2018) **Turningpoint.org.au Counsellingonline.org.au**

If you need help- Call:

- DASAS (NSW) (02) 9361 8006
- DACAS (Vic, Tas, NT) 1800 812 804

ALCOHOL AND DRUG WITHDRAWAL GUIDELINES

Thank You!

Email me at **shalini.arunogiri@monash.edu** I'm on Twitter **@SArunogiri**

IMiA21 Virtual

DISCONNECTED 26-28 February 2021 imia21.com.au