Opportunistic Infections in HIV

- Illustrative case
- An update of things (PJP, Cryptococcus, Syphilis, latent tuberculosis)

Dr Rohan Beresford Bmed FRACP FRCPA

Occam's Razor vs Hickam' Dictum

- Occam's Razor:
 - Usually stated as "the simplest explanation is usually the correct one"
 - More accurately is "the explanation that requires the fewest assumptions is likely the correct one" or "Plurality should not be posited without necessity"
- Hickam's Dictum:
 - "A patient can have as many diseases as they damn well please"

Case Presentation

- Mr X
- ▶ 51 year old male
- Dual citizen China/Australia
- Splits time between Shanghai and Sydney
- New wife lives in Shanghai
- Son lives in Sydney
- Works as "bit of this and that"
- Current smoker

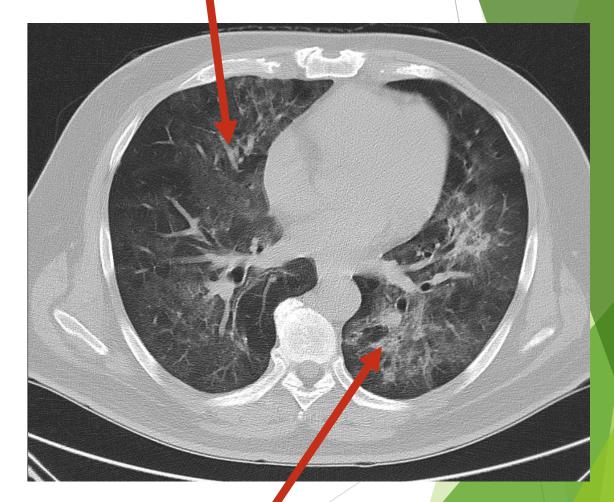
Referral to HIV Clinic

- "New HIV diagnosis"
- Phone call from GP
 - ► GP tested for HIV after noticing oral candida and fevers
 - Gave fluconazole and prednisone. Fevers are now gone.
 - Mentioned recent course ciprofloxacin for chest infection
 - Patient has non-settling chest infection for 2 months with several hospitalisations in Shanghai without improvement

Diverted to Emergency

Further history

- Current smoker
- Heterosexual
- Occasional uses sex workers in China
- Unwell 2 months with fevers, SOB, cough
- Several hospital admissions in Shanghai,
- Prolonged oral and intravenous antibiotics without effect
- Denies MSM
- Denies IVDU


In Emergency

- ► Hypoxic
- Increased Respiratory rate
- ► Febrile

Management

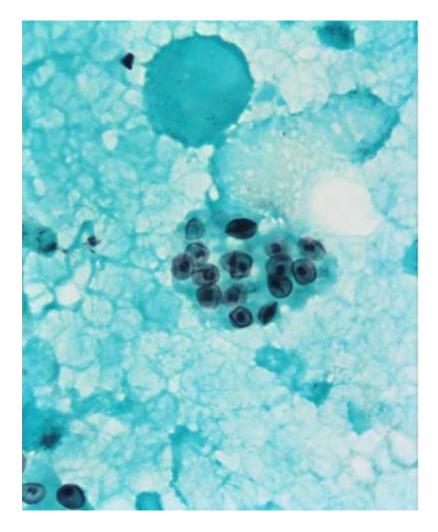
- Commenced on high dose oral Bactrim
- Prednisolone
- Admitted to wards, but with ICU review
- CT Chest
- Negative pressure isolation pending sputum for AFB
- Ordered extensive pathology for advanced HIV
- Positive PCR for Pneumocystis jirovecii

HIV Results

Wild-type virus

HIV DIAGNOSTIC	19	20 Jun 19 11:00	F
SEROLOGY	5542		54
RPT HIV Ag/Ab		Reactive ^{*A}	
Liaison XL HIV Ag/	¢	Reactive ^{*A}	
HIV Comment		Com'nt	
p24 Ag Qual		Not Tested	
HIV-1Proviral		Not Tested	
p18 HIV WB		3+ ^{*A}	
p24 HIV WB		3+ ^{*A}	
p34 HIV WB		3+ ^{*A}	
p40 HIV WB		3+ ^{*A}	
gp41-45 HIVWB		3+ ^{*A}	
p53 HIV WB		3+ ^{*A}	
p55 HIV WB		3+ ^{*A}	
p68 HIV WB		3+ ^{*A}	
gp120 HIV WB		3+ ^{*A}	
gp160 HIV WB		3+ ^{*A}	
Final Interp		Com'nt	
	_		
HIV MONITORING	1	0 Jun 19 1:00 C11531754	Rai
Lymphocytes	6	40 ^{*L}	1500
CD3 T cells %	6	7	59
CD3 T cells	4	29 ^{*L}	780-
CD4 T cells %	3	*L	30
CD4 T cells	1	9 ^{*L}	500-
CD8 T cells %	6	2 ^{*H}	14
CD8 T cells	3	97	210-
CD4:CD8 ratio	0	.0 ^{*L}	1.4-
Ѕрес Туре	P	lasma	
HIV-1 RNA	D	etected ^{*A}	
HIV-1 VL	4	894830	20-1

HIV Reference I


Opportunistic Infections and HIV/AIDS

- Opportunistic pathogens only cause disease under certain circumstances, whereas obligate pathogens cause disease for general population
- AIDS: CD4<200cells/microL
- AIDS Defining Illnesses
 - Pneumocystis jirovecii pneumonia (PJP)
 - Oesophageal Candididasis
 - CMV retinitis
 - Kaposi's sarcoma
 - Lymphoma
 - Mycobacterium avium complex (MAC) or Mycobacterium kansasii
 - Mycobacterium tuberculosis reactivation
 - Cerebral Toxoplasmosis
 - HIV wasting syndrome
 - Chronic Crypotosporidiosis

Pneumocystis jirovecii (PJP)

- The artist formerly known as PCP
- Fungal infection that was originally thought to be a Protozoan parasite
- Widespread environmental organisms that you can have colonisation with. Immunucompetent people don't develop a clinical illness
- Clinical suspicion: subacute onset. Fever, breathlessness, fatigue. Disproportionate hypoxia, dry cough.
- Radiography: Diffuse ground-glass changes. Peri-hilar predominance (Bat Wings). Pleural effusions are rare
- Not able to culture so diagnosis historically was made through immunoflourescent techniques but these were insensitive
- Standard diagnosis now PCR, lower tract sampling preferred (Bronchoscopy or induced sputum)

PJP

Use of PCR in PJP Diagnosis

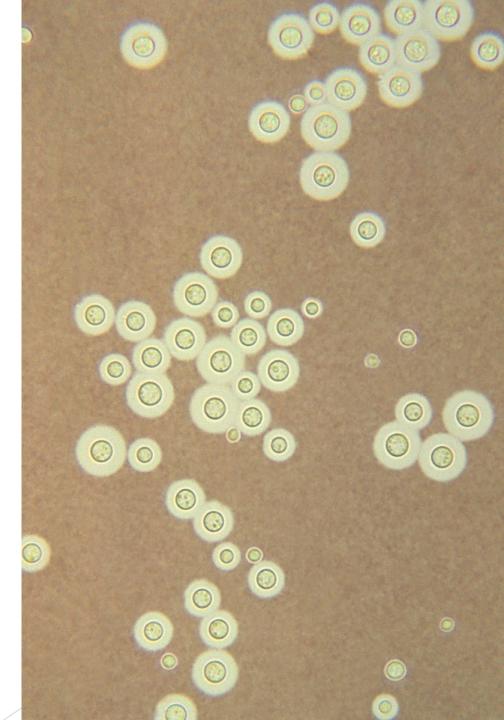
- PCR has become standard of care in diagnostics because of the low sensitivity of fluorescent microscopy, however more prone to detect colonisation
- Should always interpret a positive test by ensuring patients have a consistent clinical disease
- Research done shows that there is a quantitative difference between those with clinical PJP and those who are asymptomatic. HIV-positive patients tend to have higher levels of organism than HIV-negative patients.
 - Detection of Pneumocystis jirovecii by Quantitative PCR to Differentiate Colonization and Pneumonia in Immunocompromised HIV-positive and HIV-negative Patients. J Clin Micorbiol 206 June;54(6):1487-1495
- You may see this reported as "Positive" and "Low Positive". Some laboratories may do this but complicated as won't be specific to HIV status.
 - Still incorporate clinical assessment to reach diagnosis.

(1,3)-Beta-D-glucan - future possibilities

- Cell wall component of many fungi including Candida, Aspergillus, and Pneumocystis
- Test is a serum antigen, values >=80pg/mL are significant
- Sensitivity for PJP up to 92%, and specificity is 86%, possibly more sensitive in HIV
- Benefits: High negative predictive value, not a respiratory tract specimen so sampling easy
- Problems: Not yet widely available, interacts with other fungal infections so diagnosis still needs confirmation
- Ethical concerns about sourcing material.....

Treatment of PJP

- Trimethoprim/Sulfamethoxazole remains treatment of choice
 - Bactrim DS (160/800mg) 2 tablets tds
 - Fever and rash more common in HIV
 - Monitor LFTs and K
 - Duration is 21 days treatment then prophylaxis
- Alternatives are clindamycin+primaquine, dapsone, atovaquone, pentamidine. Would not use without infectious diseases advice
- Corticosteroids in PJP:
 - > Well established that there is a benefit for treatment in patients with substantial hypoxaemia.
 - Adjunctive corticosteroids for Pneumocystis jirovecii pneumonia in patients with HIV infection. Cochrane Database Syst Rev 2015 Apr;2015(4)
- Initiation of HAART
 - Presence of PJP does not preclude starting HAART even with risks of IRIS
 - Early treatment (<2 weeks) associated with reduced HIV progression/death and better virologic control without worse adverse events</p>
 - Early antiretroviral therapy reduces AIDS progression/death in individuals with acute opportunistic infections: A multi center randomized strategy trial. PLOS ONE 2009 May


Where does Hickam's Dictum Fit?

- Serum Cryptococcal Antigen Positive
 - ► Titre 16
- MRI Brain showed small amount peri vascular enhancement
- Commenced on Liposomal amphotericin and flucytosine
- Proceeded to LP

WCC	0
RCC	1
Prot	825
Gluc	3.7
Gram	Negative
CrAg	Negative
AFB	Negative

Cryptococcosis

- Fungal infection caused by an environmental yeast
- Generally acquired by inhalation
- Cryptococcus neoformans
 - Worldwide distribution
 - Associated with immune deficiency (HIV/AIDS, prolonged steroids, transplantation, liver disease)
 - Found in soil where pigeons frequent
- Cryptococcus gattii
 - Australia, PNG, British Colombia (Canada) and various places in USA
 - Often occurs in immunocompetent hosts
 - Found in eucalypt trees and certain other species in geographic areas where endemic disease observed

Manifestations

- Pulmonary Disease
 - Focal pneumonitis
 - Non-calcified nodules
 - Dissemination and severe disease rare in immunocompetent
 - Dissemination, ARDS, haemoptysis more common in immune compromise
- Meningitis
 - Almost all immune compromised
 - Subacute (usually 2-4 weeks)
 - Fevers variable
 - Intracranial pressure can be significantly elevated
 - CSF usually monocyte predominant

Manifestations

Cutaneous

- Part of disseminated disease
- Usually nodules or abscesses
- Other:
 - Liver
 - Lymph nodes
 - Eyes
 - Skeletal system

Diagnosis

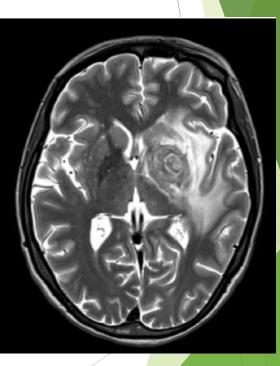
- Cryptococcal Antigen
 - Rapid test
 - Detects C. neoformans and C. gattii
 - RF can cause false positive but has been improved over the years
 - More sensitive for meningitis and dissemination than pneumonia
 - Titre >160 in asymptomatic HIV + patients predicts meningitis
 - High Cryptococcal Antigen Titres in Blood are Predictive of Subclinical Cryptococcal Meningitis among Human Immunodeficiency Virus-Infected Patients. Clin Infect Dis 2018
 - Titre decreases slowly so not good for monitoring progress in early treatment
- Culture
 - Samples: Blood, CSF, lower respiratory tract, tissue biopsy
 - Relatively slow growing

Treatment (General Principles)

- Susceptible to amphotericin, fluconazole, flucytosine routinely
- Resistant to echinocandins (micafungin, caspofungin, anidulafungin) intrinsically
- Immunocompetent patient with isolated pulmonary disease can go onto fluconazole
- Disseminated disease, meningitis, and pulmonary infection in immunocompromised should be treated with amphotericin and flucytosine, and once improved can move to fluconazole
- Immunocompromised patient should be assumed to have meningitis and must always have a lumbar puncture with CSF opening pressure recorded
 - If opening pressure >20mmH20 need therapeutic removal of CSF and ongoing LPs
- Treatment is for at least 6 months in immunocompetent patients and usually 12 + months in immunocompromised

Prognosis


- > Variable depending on site (meningitis vs pulmonary) and patient factors
- Poor prognostic factors
 - Cirrhosis
 - ► Malignancy
 - Positive staining of CSF
 - Low CSF white cell count
 - Cryptococcal antigen titre >32 (CSF or serum)
 - High opening pressure on LP


Doesn't have Cryptococcal MeningitisDoes seem to have CNS abnormality

- 3276 copies HIV in CSF
- Subtle MRI changes
- Elevated CSF Proteins

Differential:

- ► HIV related
- Cryptococcus
- Tuberculosis
- CNS Lymphoma
- Toxoplasmosis
- Syphilis

Investigating CNS Disease in HIV

- ▶ Toxoplasma: Serum IgG, PCR on CSF, classic radiology
- Syphilis: Peripheral serology, PCR and VDRL on CSF. Low threshold to treat.
- Cryptococcus: Cryptococcal antigen on CSF
- Primary CNS Lymphoma: Cytology on CSF (need white cells). MRI to look for leptomeningeal changes
- Tuberculosis: AFB culture and PCR on CSF, CSF white cells, evidence of peripheral disease
- HIV: viral load on CSF. Consider in neurological signs despite suppressed peripheral viral load
- Our patient
 - Syphilis EIA positive
 - RPR 64
 - VDRL positive on CSF

Neurosyphilis

- Really challenging area, particularly in HIV
- Asymptomatic neurosyphilis is fairly common
- Can develop symptomatic meningitis particularly early disease
- Other clinical manifestations:
 - Ocular syphilis
 - Otosyphilis (hearing loss, tinnitus)
 - Meningovascular syphilis (infarcts)
- Late neurosyphilis:
 - Tabes dorsalis
 - General paresis (dementing illness)
 - Nerve palsies

HIV and Neurosyphilis

- Neurosyphilis including early forms are more common in HIV+
- Risks:
 - ► CD4<350
 - ► RPR >128
- Early signs to watch for
 - Vision changes (ocular syphilis reported more frequently in HIV)
 - Often present as part of secondary phenomenon
 - ▶ 10% had permanent vision loss
 - Hearing loss (I don't have data on this but bilateral neurosensory hearing loss has been a common referral for me)
 - Cranial nerve palsy
- Consider routine LP in HIV and syphilis if low CD4 or high RPR
- Consider treating if high white cells, high protein, or consistent clinical syndrome

Diagnosis of Neurosyphilis

- Clinical suspicion and positive serology are first step
 - RPR does not have to be elevated in late disease
- Anyone (particularly HIV+) with ocular, otologic, or neurological symptoms with positive syphilis serology should ideally undergo lumbar puncture
- Cell count and protein
 - High protein suggestive. Note HIV+ patients may have elevated protein as part of HIV infection
 - Raised WCC. Early symptomatic disease has higher white cell count than asymptomatic and late disease
- Syphilis specific testing
 - PCR is uncommonly done
 - VDRL is most commonly used. Positive confirms diagnosis (in absence of blood stained sample). Negative does not exclude
 - ▶ FTA-ABS is more sensitive but less specific.

Treatment of Neurosyphilis

Recommended in Australia is 15 days of IV benzylpenicillin 1.8g q4 hourly

- 10.8g per day via infusers
- Consider corticosteroids at commencement to mitigate JH reactions (evidence for this is limited)
- Penicillin allergic patients
 - 1st line is desensitisation
 - Second would be Ceftriaxone daily
 - Third would be 28 days doxycycline (high dose 200mg bd)
- Monitoring after treatment:
 - Follow RPR until at least 4 fold reduction from baseline. Establish nadir
 - Repeat LP at 6 months to ensure normal isolation of CSF (can take up to 2 years)
 - Some evidence that normalization of RPR predicts CSF normalization.
 - Applies to HIV infected and uninfected, but may be less reliable if not on HAART

Mycobacterium Disease and HIV

From an endemic region for *Mycobacterium tuberculosis*

- Need to actively exclude active or latent TB
- Golden rule:
 - If you diagnose HIV you have to look for TB
 - ▶ If you diagnose TB you have to look for HIV
- Atypical Mycobacteria
 - CD4 count <50, at risk of Mycobacterium avium complex</p>
 - Prophylaxis indicated.
 - > Avoid starting MAC prophylaxis until comfortable patient does not have active disease
- Patients quantiferon gold was positive
- Sputum culture was smear negative
 - Late growth of Acid Fast Bacilli (AFB)
 - ▶ TB PCR negative, Mycobacterium kansasii

Latent Tuberculosis an HIV

- Latent tuberculosis is most common form of TB
- Non-infectious but risk of reactivation
- Aim investigation and treatment at
 - Healthcare workers
 - High prevalence countries
 - Recently infected
 - Most likely to reactivate
 - Immune compromised
 - Recently infected
 - ► HIV
 - Diabetes
 - Younger than 35 (lifetime risk is high)

Approach to Latent TB

Clinical Detail:

- Age, country of birth/childhood, age moved to Australia, BCG vaccination
- Smoking history, diabetes, HIV, cancer, immune suppression

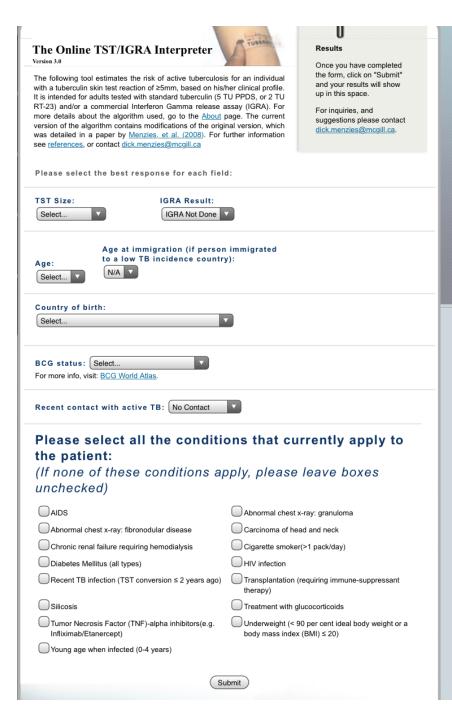
Screening test


- Tuberculin skin test TST (Mantoux)
- Interferon Gamma Release Assay IGRA (Quantiferon gold)
- Chest X-Ray
 - Central lymphadenopathy, upper lobe changes, granuloma
- Deciding on which patients to intervene with
 - Tools to calculate yearly and lifetime reactivation risk
- Choosing treatment option

Performance of screening tests in HIV positive patients

TST:

- Inject tuberculin into skin and have a delayed hypersensitivity reaction by T cells if have previously had mycobacterial disease
- False negative in heavy immune suppression, advanced HIV, very recent or very distant infection
- False positive in BCG vaccination, non-tuberculous mycobacterial infection
- IGRA: (Preferred in HIV)
 - Serology test. Measure the amount of interferon gamma released from T cells when stimulated with TB antigens.
 - Indeterminate results in heavy immune suppression or advanced HIV.
 - > Do not have false positives in BCG vaccine or non-tuberculous mycobacteria
 - Can have a false negative in highly active TB


Both of these are ONLY to be used to diagnose latent TB.

Risk Stratification

- People with HIV are far more likely to progress to active TB (by an order of magnitude
 - HAART does reduce this risk
 - Significant reactivation rate in first year of HIV acquisition
 - Yearly reactivation rates are high
- TB outcomes are worse in HIV infected people
- In general all HIV patients with Latent TB should be treated
- For both HIV infected an uninfected patients there is a useful tool
- TSTin3: <u>http://tstin3d.com/en/calc.html</u>
 - ► I use this for virtually every latent TB patient
 - Gives you firm numbers to make decision on, individualized for patient

Below are the results for a patient with a **Positive** QFT Test, who is **52** years old, born in **China**, **Shanghai**, **immigrated at age 52**, whose BCG status is **Never vaccinated or unknown**, who has had **no contact** with active TB, and who can be characterized by:

- Cigarette smoker(>1 pack/day)
- HIV infection

The likelihood that this is a true positive test (PPV) is: **98%**

The annual risk of development of active tuberculosis disease is estimated to be **8.09%**.

The cumulative risk of active tuberculosis disease, up to the age of 80, is: **100%**

If treated with INH, the probability of clinically significant drug-induced hepatitis is **2.3%**, and the associated probability of hospitalization related to drug-induced hepatitis is **0.6%**.

How to Treat Latent TB

- Isoniazid 300mg daily for 9 months (very common in HIV+)
 - Long treatment course
 - Can cause hepatitis
 - Risk of peripheral neuropathy, consider pyridoxine
 - Isoniazid resistance is 7.4% minimum globally, higher in Eastern Europe and Western Pacific
- Rifampicin 600mg daily for 4 months (normal weight range)
 - Short course
 - Less common resistance
 - Drug/Drug interactions
- Rifampicin + Isoniazid for 3 months
- Rifapentine
- Yearly monitoring with Chest X-ray
 - What to do if unsuitable for treatment

Rifampicin in HIV

- Inducer of cytochrome P450
- Reduces activity of corticosteroids, OCP
- Interactions with HAART
 - Reduces bictegravir (Biktarvy)
 - Raltegravir and Dolutegravir probably ok
 - Affects TAF but not TDF to same extent
 - Reduces all PIs
- Alternative drug is Rifabutin
 - No evidence for use in latent TB

Hickam's Dictum.....

- Opportunistic Infections in 51yo male with HIV/AIDS
 - ► PJP
 - Oesophageal Candidiasis
 - Cryptococcosis
 - Mycobacterium kansasii
 - Latent tuberculosis
 - Neurosyphilis
 - Reactivated Hepatitis B
 - ► Lymphoma
 - CMV viraemia

Other OI updates of interest

- CMV Resistance in retinitis
 - Letermovir
 - ► Maribavir
- Fluconazole resistance in Candidiasis
 - Increasing rates of resistance to fluconazole
 - Echinocandins may have a role, rezafungin of interest
 - Ibrexafungerp is promising oral agent for future

The End