Construction and Characterization of two Chimeric HTLV-1\textsubscript{AC} Infectious Molecular Clones

Sarkis S1, Moles R1, Gutowska A1, Galli V1, Omsland M1, Washington-Parks R1, Purcell DFJ2, Pise-Masison C1, Franchini G1

1Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
2Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia

Background:
HTLV-1C, the most divergent virus variant, has recently is endemic in indigenous populations in Central Australia. HTLV-1 A and C apparently differ in their clinical manifestation as well as in the orf-I sequence. Given the importance of orf-I expression for HTLV-1A fitness, we investigated whether and how orf-I is expressed in HTLV-1C infection and investigate whether HTLV-1A and HTLV-1C infection causes different inflammatory profiles \textit{in vitro} and in animals \textit{in vivo}.

Methods:
We engineered two chimeric HTLV-1\textsubscript{AC} molecular clones by inserting into the pAB HTLV-1A backbone either the HTLV-1C orf-I, II (HTLV-1\textsubscript{ACO-I/II}) or orf-I, II, III, IV genes and the 3’LTR (HTLV-1\textsubscript{ACO-L}).

Results:
We found that that un-spliced, singly and doubly spliced mRNAs identified in HTLV-1A are present in cells transfected with both chimeric molecular clones and demonstrated that subtype C orf-I is expressed via a doubly spliced mRNA that juxtaposes the first exon of rex, and its ATG in frame to orf-I. This mRNA encodes a 16KDA protein (p16). Western blotting further demonstrated the presence of HTLV-1 p24Gag, gp46Env and Tax protein in both transfected cells as well as in stably infected 729.6 B cells producing the chimeric viruses. Similar, to HTLV-1A, the Tax protein encoded by HTLV-1\textsubscript{ACO-L} is a potent activator of CREB/ATF and of NF-kB. Moreover, following the co-cultivation of HTLV-1\textsubscript{ACO-I/III} and HTLV-1\textsubscript{ACO-L} infected 729.6 B cells with the SupT-1-LTR-GFP reporter cells we demonstrated that both chimeric viruses can be transmitted to human CD4+T-cells.

Conclusion:
Our data demonstrate that two HTLV-1\textsubscript{AC} chimeric molecular clones, whereby either the type C orf-I/II, or all 3’orfs and LTR, were swapped into HTLV-1A, are biologically active and infectious. The availability of these molecular clones, hopefully, will provide the opportunity to study HTLV-1C pathogenicity and inflammatory profile in macaques, a relevant animal model for testing approaches to prevent infection and treat diseases associated with HTLV-1C infection.