Understanding the effects of CMV on γδ T-cell populations in HIV patients starting antiretroviral therapy

Authors:
Ibnu A Ariyantoa,b, Silvia Leec,d, Riwanti Estiasarie,f, Jeanne Edmandsd, Budiman Belab, Amin Soebandriog, Patricia Priceb,d
a Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
b Virology and Cancer Pathobiology Research Center, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
c Department of Microbiology, Pathwest Laboratory Medicine, Perth, Australia.
d School of Pharmacy & Biomedical Science, Curtin University, Perth, Australia.
e Department of Neurology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
f dr.Cipto Mangunkusumo Hospital, Jakarta, Indonesia
g Eijkman Institute for Molecular Biology, Jakarta, Indonesia.

Background:
Cytomegalovirus (CMV) affects γδ T-cell profiles in healthy individuals and transplant recipients. However the effects of HIV and CMV have not been distinguished in HIV patients, and were addressed here in Indonesian patients with a high burden of CMV.

Methods:
HIV patients (\(n=40\)) were studied before ART (V0) and after six months (V6), alongside healthy controls (\(n=20\)). 50\% of patients had detectable CMV DNA at V0 and were grouped as CMV DNA+ or CMV DNA-. All participants were CMV-seropositive. Flow cytometry was used to assess proportions of Vδ2\(^{-}\) and Vδ2\(^{+}\) γδ T-cells, their activation (HLA-DR) and terminal differentiation (CD27\(^{-}\)/CD45RA\(^{+}\), CD57) and expression of NK cell-associated receptors (NKG2C, LIR1, CD16).

Results:
Proportions of Vδ2\(^{-}\) γδ T-cells were high in HIV patients at V0 and declined at V6, remaining above levels in healthy controls. Proportions of Vδ2\(^{+}\) γδ T-cells were uniformly low in patients, and the residual cells were enriched for markers of terminal differentiation. Proportions of Vδ2\(^{+}\) γδ T-cells correlated inversely with levels of CMV DNA and CMV-reactive antibody. CMV reactive-antibody levels correlated with the expression of HLA-DR on Vδ2\(^{+}\) γδ T-cells in CMV DNA- patients. There was no association between CMV metrics and proportions of TEMRA γδ T-cells. CMV DNA+ patients showed a direct correlation between CMV reactive-antibody levels and CD8\(^{+}\) γδ T-cells at V0. This relationship that was reversed at V6.

Conclusions:
We demonstrate a role for CMV in the depletion of Vδ2\(^{+}\) γδ T-cells in HIV patients beginning ART, but find no consistent evidence of a role for CMV in the activation of γδ T-cells or their expression of markers of terminal differentiation. CMV may affect γδ T-cell expression of CD8.

Disclosure Statement:
Nothing to disclose.