THE CONTRIBUTION OF INJECTING DRUG USE TO HEPATITIS C VIRUS TRANSMISSION GLOBALLY, REGIONALLY, AND AT COUNTRY LEVEL: A MODELLING STUDY

Trickey A1,2, Fraser H1, Lim AG1, Walker JG1, Peacock A3, Colledge S3, Leung J3,4, Grebely J5, Larney S3, Martin NK6,1, Degenhardt L3, Hickman M1,2, May MT1,2,7, Vickerman P1

Adam Trickey

1Population Health Sciences, University of Bristol, Bristol, UK
2National Institute of Health Research (NIHR) Health Protection Research Unit (HPRU) in Evaluation of Interventions
3National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW, Australia
4Centre for Youth Substance Abuse Research, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia
5The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
6Division of Infectious Diseases and Global Public Health, University of California, San Diego, USA
7National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol

Background:
Injecting drug use (IDU) is an important risk factor for Hepatitis C virus (HCV) transmission. HCV prevalence amongst people who inject drugs (PWID) is generally high but the prevalence of PWID in most countries is <1% of adults. Modelling was undertaken to estimate the degree to which IDU contributes towards HCV transmission at country, regional and global levels.

Methods:
A dynamic, deterministic HCV transmission model was used to simulate the country-level HCV epidemic amongst PWID and the general population. The model for each country was calibrated using country-specific data from UN datasets and recent systematic reviews on HCV prevalence amongst PWID and the general population, and the proportion of adults that are PWID. We estimated the dynamic population attributable fraction (PAF) due to IDU: the proportion of new HCV infections within each country that would be prevented if HCV transmission due to IDU were removed for the 20-year period 2017-2037.

Results:
The model was successfully calibrated to 82/83 of the included countries comprising 84% of the global population. Although the model predicts 0.2% of individuals will be PWID in 2037, 7% of prevalent HCV in 2037 is among PWID. Globally, if the risks due to IDU were removed, then an estimated 32% (IQR: 24%-39%) of all incident HCV infections (the PAF) would be prevented during 2017-2037, varying by region. IDU contributes most to HCV transmission in high-income settings, where 66% of new HCV infections could be prevented from removing the risk due to IDU, whereas in lower and middle-income countries it is 27%.

Conclusion:
IDU contributes significantly to the global burden of HCV, but this varies widely across countries. Scaling up HCV prevention interventions for PWID, including needle and syringe programmes, opioid substitution therapy, and HCV treatment will be essential to meet WHO elimination targets in many settings.
Disclosure of Interest Statement:
JG is a consultant/advisor and has received research grants from AbbVie, Bristol–Myers Squibb, Cepheid, Gilead Sciences and Merck/MSD. In the past 3 years, LD has received investigator-initiated untied educational grants for studies of opioid medications in Australia from Indivior, Mundipharma, and Seqirus. SL has received investigator initiated untied educational grants from Indivior. AP has received investigator-initiated untied educational grants from Mundipharma and Seqirus. MH reports personal fees from Gilead, Abbvie, and MSD. HF has received an honorarium from MSD.