Seroprevalence of neutralising antibodies in an HTLV-1c+ First Nations cohort from central Australia.

Grimley SL1, Monard S1,2, Yap A1, Hirons A1, Collins S1, Yurick D1, Khoury G1, Ellenberg P1, Pellegrini M3,4, Einsiedel L1,5, Purcell DFJP1

1 The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne Victoria, Australia.
2 Université Claude Bernard, Université de Lyon, Lyon, France.
3 Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne Victoria, Australia.
4 Department of Medical Biology, The University of Melbourne, Parkville, Melbourne Victoria, Australia.
5 Department of Medicine, Alice Springs Hospital, Alice Springs, NT, Australia.

Background:
HTLV-1 subtype A is the globally dominant strain that is associated with adult T-cell lymphoma and inflammatory diseases such as myelopathy and bronchiectasis. Subtype C is endemic in Melanesia and First Nations communities of remote Central Australia where the adult prevalence around 40% is thought to contribute to the decreased life expectancy of Indigenous Australians. There are currently no vaccines or approved therapeutics for prevention or treatment of HTLV-1 infection. Here, we assessed the prevalence of anti-Envelope (Env) antibodies in a cohort of Aboriginal Australian patients from Central Australia and investigated the capability of these immunoglobulins to neutralise HTLV-1 subtype C infection.

Methods:
Plasma was isolated from HTLV-1c+ individuals (n=46) admitted to the Alice Springs Hospital. Neutralising activity was assessed using a pseudovirus (PSV) reporter assay, proviral load (PVL) measurements of integrated viral genome were quantified by droplet digital PCR (ddPCR) and binding epitopes were mapped using a peptide ELISA.

Results:
Of the 46 HTLV-1c+ plasma samples tested, 87% demonstrated the ability to neutralise HTLV-1c PSV infection with ID50 values as high as 39,125 compared to HTLV-1c- samples (ID50 <40). PVL, a predictor of disease outcome, positively associates with neutralising titres. Mapping of these binding epitopes suggests that a well-conserved region of the proline rich repeat region (PRR) from amino acids 191 – 196 is an important contributing factor to this anti-Env response.

Conclusion:
Our data indicate that antibodies capable of binding Env and neutralising infection commonly arise over the long course of HTLV-1c infection, with a high proportion targeting the PRR. This first study frequently finding an effective neutralising antibody response in an Australian First Nations cohort has important implications for future vaccine and therapeutics development.

Disclosure of interest statement:
Nothing to disclose.

Acknowledgment of Funding:
This study was funded in part by the Westmead Institute for Medical Research (ACH2).