SURVEILLANCE TESTING USING SALIVARY RT-PCR FOR SARS-COV-2 IN MANAGED QUARANTINE FACILITIES IN AUSTRALIA: A LABORATORY VALIDATION AND IMPLEMENTATION STUDY <u>Batty M ^{4*}</u>, Jenney A^{1*}, Chibo D^{4*}, Druce J^{4*}, Melvin R¹⁰, Stewardson A², Dennison A¹, Symes S⁸, Kinsella P⁴, Tran T⁴, Mackenzie C⁴, Johnson D^{5,6}, Thevarajan I⁵, McGrath C⁷, Matlock A⁸, Prestedge J⁹, Gooey M⁴, Roney J³, Bobbitt J⁸, Yallop S⁸, Catton M⁴, Williamson DA^{4,6#} ¹Department of Microbiology, Alfred Hospital, Melbourne, Victoria, Australia, ²Department of Infectious Diseases, Alfred Hospital, Melbourne, Victoria, Australia, ³Clinical Research Unit, Department of Infectious Diseases, Alfred Hospital, Melbourne, Victoria, Australia, ⁴Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity. Melbourne, Victoria, Australia, ⁵Department of Infectious Diseases, Royal Melbourne Hospital, Melbourne, Victoria, Australia, ⁶Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Victoria, Australia, ⁷Department of Infectious Diseases, Northern Health, Melbourne, Victoria, Australia, ⁸Pathology, Engagement and Testing, Victorian Department of Health, Melbourne, Victoria, Australia, ⁹Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity. Melbourne, Victoria, Australia, ¹⁰Hotel Support Services, Alfred Hospital, Melbourne, Victoria, Australia **Background:** Regular repeat surveillance testing is a strategy to identify SARS-CoV-2 infectious asymptomatic individuals in high-risk work settings to prevent onward community transmission. Saliva sampling is less invasive compared to nasal/oropharyngeal sampling, thus making it suitable for regular testing. In this multi-centre evaluation, we aimed to validate salivary RT-PCR testing of SARS-CoV-2 for large-scale surveillance testing and assess implementation amongst staff working in the hotel quarantine system in Victoria, Australia. **Methods:** A multi-centre laboratory evaluation study was conducted to systematically validate the *in vitro* and clinical performance of salivary RT-PCR for implementation of SARS-CoV-2 surveillance testing. Analytical sensitivity for multiple RT-PCR platforms was assessed using a dilution series of known SARS-CoV-2 viral loads, and assay specificity was examined using a panel of viral pathogens other than SARS-CoV-2. Regular self-collected saliva swab RT-PCR testing was implemented for staff across fourteen quarantine hotels. Samples were tested at three diagnostic laboratories validated in this study, and results were provided back to staff in real-time. **Results:** The agreement of self-collected saliva swabs for RT-PCR was 72.6% (95% CI 60.3 to 82.2) compared to RT-PCR using nasal/oropharyngeal swab samples collected by a healthcare practitioner. Sensitivity increased to 82.5% (95% CI 67.7 to 91.6) when saliva samples were collected within seven days of symptom onset. Between 7th December 2020 and 17th December 2021, almost 500,000 RT-PCR tests were performed on saliva swabs self-collected by staff working in quarantine hotels in Melbourne. The majority of staff that tested positive occurred during periods of community transmission of the SARS-CoV-2 Delta variant. **Conclusion:** Salivary RT-PCR had an acceptable level of agreement compared to standard nasal/oropharyngeal swab RT-PCR within early symptom onset. The scalability, tolerability and ease of self-collection highlights utility for frequent or repeated testing in high risk settings, such as quarantine or healthcare environments. Disclosure of Interest Statement: No conflicts to disclose.