Human T-Lymphotrophic virus type 1 and Human Immunodeficiency Virus co-infection in rural Gabon, Central Africa

Mouinga-Ondeme A1, Boundenga LA2,3, Koumba-Koumba IP1,4, Mamimandjiami AI1, Diané A1, Engone-Ondo JD1, Sica J5, Mombo LE4, Gessain A6 and Aghokeng-Fobang A7,8

1 Unité des Infections Rétrovirales et Pathologies Associées, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon.
2 Groupe Evolution et transmission inter-espèces des pathogènes (GETIP), département de Parasitologie, CIRMF, Gabon.
3 Unité des Maladies Emergentes, CIRMF, Gabon.
4 Laboratoire de Biologie Moléculaire et Cellulaire (LABMC), Université des Sciences et Techniques de Masuku (USTM), Franceville, Gabon
5 Centre de Traitement Ambulatoire, Franceville, Gabon
6 Unité d’Epidémiologie et de Physiopathologie des Virus Oncogènes (EPVO), et CNRS UMR3569, Institut Pasteur de Paris, France
7 Unité Mixte de Recherche sur le VIH et les Maladies Infectieuses Associées, CIRMF Gabon
8 MIVEGEC, Université de Montpellier, CNRS, IRD - Montpellier, France.

Background
Human T-cell lymphotropic virus type-1 (HTLV-1) and human immunodeficiency virus (HIV-1) co-infection can occur. People living with HIV-1 and infected with HTLV-1 seem more likely to progress rapidly towards AIDS. Both retroviruses are endemic in Gabon. We investigated HTLV-1 and HIV-1 co-infection in the Haut-Ogooué province, and assessed factors that may favor the rapid progression to AIDS in co-infected patients.

Methods
Plasma samples from HIV-1 patients were tested using ELISA HTLV-1/2, and positive samples were then tested by western blot (WB). We used PCR to detect HTLV-1 Tax/Rex genes using DNA extracted from theuffy coat of ELISA-positives samples. All tax-positive samples were further analyzed with another semi-nested PCR to amplify a 522 bp fragment of the env gene.

Results
We recruited 299 individuals (mean age: 46 years) including 90 (30%) men and 209 (70%) women, all of whom are under treatment. Of these, 45 were ELISA seropositive. According to WB criteria, 20 were HTLV-1 (44%), 1 HTLV-1/2 (2%), 2 indeterminate (4%) and 22 seronegative (49%). PCR results showed that 23 individuals were positive for the Tax/Rex region. The overall prevalence of HTLV-1 infection was estimated at 7.7%. Phylogenetic analyses of the env gene fragment showed that 13 of the new 14 characterized strains belonged to HTLV-1b genotype. One belonged to the HTLV-1d genotype. Being a woman and increasing age were found to be independent risk factors for co-infection. Mean CD4+ cell counts were higher in HTLV-1/HIV-1 co-infected (578.1 ± 340.8 cells/mm³) than in HIV-1 mono-infected (481.0 ± 299.0 cells/mm³) Individuals. Similarly, the mean HIV-1 viral load was Log 3.0 ± 1.6 copies/ml in mono-infected and Log 2.3 ± 0.7 copies/ml in coinfectected individuals.

Conclusion
We described an overall high prevalence of HTLV-1/HIV-1 co-infection in Gabon. Our findings stress the need of strategies to prevent and manage these co-infections.
DISCLOSURE OF INTEREST STATEMENT: None