PROBLEM SOLVING, RISK AND STRATEGIC MANAGEMENT

Jaime Fox RMA 2017 PRESENTATION 21 OCT 2017

Aim

Provide overview of Medical Discharge Analysis Project.

Discussion of application of Systems Framework to Medical context.

Project Management

- The essence of Project Management is addressing failure and/or expectation:
 - Something has broken or fails to function.
 - Current configuration will not meet future requirement.
 - Providing solutions to work toward 'Success'.

Risk and Systems Thinking

- Success is the achievement of an aim or objective.
- Risk is potential of gaining or losing something of value.
 - due to action or inaction,
 - foreseen or unpredictable circumstances.
- Systems thinking identifying problems requiring resolution,
 - prioritised by impact,
 - devising associated solutions to problems identified.

Medical Discharge Analysis

- Medical discharges peaked during 2013, reason unknown.
- Factors multi-factorial and complex to analyse.
- Consequences of Medical Discharges:
 - High cost to defence without capability delivery
 - Wages
 - Rehabilitation
 - Compensation
 - Higher enlistment targets
 - Psychosocial cost to individuals
 - Uncertainty future employment
 - Self-esteem
 - Lingering compensation liability to Defence

Medical Discharge Project

Data

- Multiple computer-based systems de-identified trainee data (from 2004).
- Interviews of key personnel, anecdotal issues.
- Previous study outcomes
 - Physical pre-conditioning
 - Previous medical discharge investigations

Medical Separation

- Discharge by category
- Definition of what constitutes medically unfit, associated policy by category
- Timecourse for recovery
- Local Doctor evaluation.
- Welfare board review
 - MDT review of high risk recruits
 - Command participation
- Continuity of training
 - Backsquad after 2-3 days missed training
 - Convalescence in home location in some circumstances

Data Analysis

- Recruit training analysed by training component and demographic:
 - Injury type lower limb, strains and stress fractures, reversible pathologies.
 - Separations by gender, females proportionally higher.
 - Processing time increased prior to 2013.
 - High frequency of injury by date, found peaks of injury September and January, found to be attributed to re-injury of previously injured.
 - Age proportionality reflective of intake demographic

Data Analysis

MOI - Physical Training

- Most common activity attributed to discharge.
- Causative lessons targeted and assessed.
- Physical training program assessed and graduated.
- Injury by Platoon
 - Peak in two platoons
 - associated with group re-entry into training.
- Injury by Job Category
 - Proportional to intake demographic
- Height, weight, BMI
 - Above average height males for lower limb injuries

Previous Analysis

Preparation time

- No association found
- Previous ball sports
 - Insufficient data
- Cadet experience
 - All discharged did not have previous cadet experience
- Qualification level
 - No direct relationship established
- Initial fitness test results
 - Lower performance for beep test, increased propensity for discharge

Medical Systems Factors

- Recruiting Standards Changes
- Medical Discharge Categorisation policy changed
 - Categorisation policy change
 - Time component and prognosis consideration changed
- Lack of dedicated MO, dependent on locum pool.

Outcomes

Timing and assessment of discharges

- standardised process
- supported by MDT and Welfare Boards
- Pre-conditioning of at-risk co-hort
- Monitoring of PT Program and injury reporting
- Further research required:
 - Relaxation of medical entry standards
 - Above-average height male injuries

Six Sigma

- Continual stable and predictable process results.
- Processes have characteristics that can be defined, measured, analysed, improved, and controlled.
- Sustained improvement achieved by whole-of-organisation commitment.
- Achievement of measurable and quantifiable results.
- Decision making based on verifiable data and statistical methods, rather than assumptions and guesswork.
- An increased emphasis on strong and passionate management leadership and support.

Practical Application

- Problem definition, risk profile and quantification.
- Identify the desired endstate/objective.
- Stepwise approach to achieve the endstate.
- Hierarchy of controls to address risk.

Risk-based Thinking

Identify and quantify the risk

- Short term control to mitigate the risk in short-term.
- Long term solution to eliminate the risk completely
- Policy and documentation to ensure sustainability and corporate memory.
- All problems and solutions are to be quantified. Data and statistics, processes and systems are important.

Conclusion

Overview of systems thinking and problem solving in a Medical context.